NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	B. Tech. (All Programme)
Course Code:	
Course Title:	Mathematics I
Course Type:	Introductory
Year of introduction:	2022-2023

L	T	Practical component				
		LPW	PW	W	S	
2	1	-	-	-	-	3

Course Learning Outcomes (CLOs):
At the end of the course, the students will be able to –

	The time of the country time between the country to	
1.	comprehend the concept of vector space	(BL2)
2.	extend the knowledge of matrix theory and its applications in engineering	(BL2)
3.	solve real world problems using linear transformations	(BL3)
4.	apply the knowledge of eigen value & eigen vector for advance matrix	(BL3)
	calculations	

Syllabus:

Total Teaching hours:30

Unit	Syllabus	Teaching hours	
Unit I	Vector Space: Vector space & Subspace, Linear Combination, Span Set, Linearly independent and Linearly dependent Set, Basis and Dimension of the vector space, Extension & Reduction of a set to the Basis, Coordinate of Basis and Change of basis.	08	
Unit II	Matrices and Linear Equations: Row Echelon Form and Rank of matrix, Solution of system of algebraic simultaneous equations using Gauss Elimination Method, Reduced Row Echelon Form and Inverse of matrix by Gauss-Jordan method.	07	
Unit III	Linear Transformation: Definition of linear transformation, Standard linear transformations, Matrix of Linear transformations, Range and Kernel of Linear Transformation, Dimension Theorem, Inverse Linear Transformation, Similarity Transformation.	07	
Unit IV	Eigne values and Eigen Vectors : Eigen values and Eigen vectors, Basis of Eigen Space, Algebraic and Geometric multiplicity, Caley-Hamilton Theorem, Diagonalization, Symmetric matrices and Orthogonal Diagonalization, Quadratic Forms and Canonical Forms	08	

Tutorial Works:

This shall consist of 10 tutorials based on the syllabus.

Self-Study:

Self-study contents will be declared at the commencement of the semester. Around 10 % of the questions will be asked from the self-study contents.

Suggested Readings/ References:

- 1. H Anton, Elementary linear algebra with applications; John Wiley Publication
- 2. D C Lay, Linear Algebra and its Application; Pearson Publication
- 3. B Kolman and D Hill, Elementary linear algebra with applications; Pearson Publication
- 4. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Algebra: Pearson Publication
- 5. Seymour Lipschutz, Marc Lipson, Schaum's Outline of Linear Algebra: Mc Graw Hill Publication
- 6. J P Sharma and M Yeolekar, Engineering mathematics Vol-II; PHI Publication