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Abstract—An oppositional-based learning approach with a real
coded chemical reaction algorithm (ORCCRO) has been
considered in this manuscript. The ORCCRO algorithm has been
used here to find the near-global optimum solution for multi-
objective economic-emission load dispatch problem with having
nonlinear constraints. Emission extract from thermal power plants
like NOx, inequality constraints like power generation operating
limit and equality constraints like power balance consideration are
considered here. ORCCRO follows the process to reach a stable
state in lower energy with different molecular chemical collision.
Oppositional-based learning mechanism has also hybrid here with
RCCRO to find out more effective solution. Three different test
systems are considered for simulation studies revealed that the
ORCCRO method is much superior in comparison with other
effective algorithms. The results obtained in these three test
systems prove the robustness and the efficiency of ORCCRO.

1. INTRODUCTION

1.1. Motivation

Economic load dispatch (ELD) gives the best solution of
the current generation units to provide highly reliable with
low cost of generation subjected to some inequality and
equality constraints. Since the 1980s due to the execution
of various pollution control acts, the emissions of the
power plants are included in ELD problem formulation to
minimize the level of pollution (like NOx, SOx, COx, etc.)
with the cheapest energy. The economic emission dispatch
(EED) problem minimizes the total fuel cost and emission
of pollutants like NOx, SOx, COx, etc. from the thermal
power plant. Despite this, minimizing the EED problems
cannot be supervised by standard single-objective optimiza-
tion techniques. Thus, economic-emission load dispatch
(EELD) acts as a multi-objective optimization problem
where minimization of fuel cost and minimization of emis-
sion level at the same time with massive equality and
inequality constraints.

Keywords: best compromise solution, economic-emission load dispatch,
oppositional based real coded chemical reaction optimization, valve-
point loading
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1.2. Literature Survey

In [1, 2], various approaches to emission reduction are pro-
posed and discussed. In 1992, the first approach to emis-
sions as the sole objective optimization was explained in
[3]. Nanda et al. [4, 5] use programming methods in
EELD as a multipurpose optimization problem to minimize
the overall cost of creating and controlling concurrent con-
tamination. Efficiency, safety, and environmental protection
are used as near global optimum multi-function generation
to be sent using probability criteria [6]. Linear program-
ming techniques are also used in multi-purpose ELD prob-
lems in [7] where targets are considered individually.
Production and emission cost used as a single target in [8,
9]. Abido [10–12] is involved in diverse environmental and
economic expeditions using genetic algorithms for domi-
nating sorting (NSGA) and evolutionary programming. The
constraint method is used [13] in near-global optimum
non-convex problems.

Srinivasan et al. [14] solve multi-purpose manufacturing
planning using fuzzy near global optimum search technol-
ogy. A new technique developed for fuzzy satisfaction
with maximizing the decision-making approach [15] in
sending the Bi target group to overwhelm in [14]. The gen-
etic algorithm developed by the cross-arithmetic technique
was used for the EELD problem in [16]. Another version
of a genetic algorithm called refined genetic algorithm
(RGA) has been described by Sudhakaran et al. [17] for
the EELD problem. Furthermore, an evolution algorithm
[18] based on the EELD problem proposed by Srinivasan
et al. Stochastic multi-objective search techniques are pro-
posed in [19] for ELD. The disadvantage of this technique
is high computational time. Fonseca and Fleming [20]
apply the evolution algorithm method to solve the delivery
of economic burdens and emissions. Coello [21] uses an
evolutionary algorithm in EELD problem and find a better
solution. Al Rashidi and El-Hawary [22] have tried to offer
improved solutions by employing a population based algo-
rithm PSO in EELD, which takes into account all NOx,
COx and SOx emissions. Thakur et al. [23] apply PSO for
EELD problems, taking into account NO2 and SO2 emis-
sions. Another new methodology proposed in [24] for the
differential progress of techniques to resolve emissions
from economic burdens and emissions, with emissions as a
constraint or production cost treated as an additional
objective function of a multi-objective optimization prob-
lem. Multipurpose differential algorithm (MODE) in [25]
used to solve EELD problem area with three multipurpose
costs, emissions and transmission losses. Abou El Ela
et al. [26] and Basu [27] also use differential evolution

algorithms to solve emission reduction problems. A new
bacterial multiplication algorithm (MBFA) has integrated
in [28] to solve EELD problem. The biogeography based
optimization algorithm (BBO) proposed in 2008 shows its
superiority in solving various optimization problems. In
[29], a successfully implementation of BBO had been
occur to solve various EELD problems. The above techni-
ques provide near global optimum solutions that are fast
and almost global. Some hybrid techniques like [30] were
introduced to solve EELD problems in finding outputs that
were significantly improved and faster than individual tech-
nique. Rajasomashekar and Aravindhababu [31] also for-
mulate the BBO algorithm in the EELD problem.

In [32, 33], two effective evolutionary techniques uses
to solve limited problems in economic shipping. Genetic
algorithms are applied, integrated into the cone method in
[34], to turn a multipurpose problem into a single goal
object and resolved the emissions to the energy system.
Once again, the authors apply the combined gradient modifi-
cation technique that has been added to the search for har-
mony [35] to solve the issue of emissions. Chatterjee et al.
[36] introduced the opposition training scheme as part of the
basic algorithm for finding harmony to solve the combined
emissions problem. Shaw et al. [37] using gravitation search
algorithm (GSA) with included an opposition training scheme
developed to optimize techniques for solving combined eco-
nomic and emissions problems.

1.3. Contributions

Lam and Li [38] have proposed an optimization method
based on chemical reactions (CRO). In CRO, the initial
reagent molecules are maintained in an unstable high
energy state and experience a sequence between wall colli-
sions or inter molecules. The reagent goes through several
energy barriers and reaches a state of stable energy and
becomes a finished product. Using various types of wall or
intermolecular reactions in CRO high-energy molecules are
converted into low-energy stable states. Real version of
CRO has developed in [39]. It has been found that the
presentation of RCCRO is pretty suitable in solving the
problem of sustained benchmark optimization.

The evolution algorithm, swarm intelligence, and bacter-
ial nutrient collection are biologically inspired population
algorithms. However, a general weakness of this algorithm
is complex calculations using various parameters. Hence, it
is hard for beginners to recognize this algorithm.

Tizhoosh [40] is offered by opposition training. OBL
was first used by Ventresca and Tizhoosh [41] to increase
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backward training and propagation in neural networks and
has since been applied to many such as DE [42], PSO
[43], and ant algorithm [44]. OBL interprets this philoso-
phy and suggests using the opposite, not haphazard statis-
tics, to find the optimum value speedily. Opposite numbers
is the main belief of OBL to find a solution. The OBL
inventors say that the opposite number might be closer
than the arbitrary number for a solution. So, if you com-
pare one number with another, fewer exploration area is
needed to find the near global optimum result. In [45]
proving that quasi opponents are nearer than any number
to the solution. It is also proven that quasi partners are usu-
ally closer to solution partners. The enhanced computa-
tional effectiveness of the quasi opposition training
perception motivates current authors to integrate it into
RCCRO (ORCCRO) to quicken the rate of RCCRO meet-
ing, by comparing the suitability of the solution rankings
with the opposite, leaving fit in the system at randomly
selected population sets. The EELD problem was solved
with the help of TVAC-PSO in combination with EMA in
[53]. To solve the dynamic EELD problem [54], a new dif-
ferential evolution algorithm is used. Recently, the search
for harmony [55] and extreme population optimization [56]
has been introduced to resolve the EELD problem. To
overcome the EELD problem [57], a new algorithm for
chaotic enhanced harmonic search is used.

1.4. Organization of Paper

Section 2 provides a mathematical formulation of the
EELD problem. Section 3 provides a short description on
RCCRO algorithm. Section 4 presents the oppositional
based leaning. The various test system and results are dis-
cussed in Section 5. The conclusion of the manuscript is
given in Section 6.

2. DESCRIPTION OF EELD PROBLEM

2.1. Economical Load Dispatch

F1 ¼
XN

i¼1
Fi Pið Þ ¼

XN

i¼1
ðai þ biPi þ CiP

2
i Þ þ ei

� ½sinffi � Pimin � Pið Þg�$=hr
(1)

where Fi(Pi) is a function of generator prices for output Pi;
ai, bi, and ci are the consumption coefficients of the ith
generator; N is total generators. The fuel cost (1) is subject
to the following conditions.

2.1.1. Real Power Constraint.XN

i¼1
Pi � PD þ PLð Þ ¼ 0 (2)

PD is the total load demand in MW.
The network losses PL in B-coefficients form as given

below

PL ¼
XN

i¼1

XN

j¼1
PiBijPj þ

XN

i¼1
B0iPi þ B00 (3)

2.1.2. Generation Capacity Constraint. From each unit

power Pi generated shall be within their lower limit Pmin
i

or upper limit Pmax
i : So that

Pmin
i � Pi � Pmax

i (4)

The power level of Nth generator (i.e., slack generator) is
given by the following equation

PN ¼ PD þ PL �
X N�1ð Þ

i¼1
Pi (5)

The transmission loss PL is a function of all the genera-
tors including that of the slack generator (Nth generator)
and it is given by

PL ¼
XN�1

i¼1

XN�1

j¼1
PiBijPj þ 2PN

XN�1

i¼1
BNiPi

� �

þ BNNP
2
N þ

XN�1

i¼1
B0iPi þ B0NPN þ B00 (6)

Expanding and rearranging (5) and (6),

BNN PN
2 þ 2

XN�1

i¼1
BNi P i þ B0N � 1

� �
PN

þ PD þ
XN�1

i¼1

XN�1

j¼1
Pi Bi j Pj þ

XN�1

i¼1
B0 i Pi

�

�
XN � 1

i¼1
Pi þ B00

�
¼ 0

(7)

The loading of the dependent generator called slack gen-
erator, i.e., Nth can then be found by solving (7).

2.2. Economic Emission Dispatch

The economic emission dispatch problem for NOx gases
emission can be defined as

F2 ¼
XN

i¼1
Fxi Pið Þ

� �

¼
XN

i¼1
10�2 ai þ biPi þ ciPi

2
� �

þ niexp kiPið Þ Ton=hr
�

(8)

F2 is NOx released from the system in (kg/hr or ton/hr);
Fxi(Pi) is the ith generator’s emission function for Pi out-
put; ai, bi, ci, ni, and ki are the emission coefficients of
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ith generator. Equation (8) is minimized based on the con-
straints mentioned in (2) and (4).

2.2.1. Economic-emission Load Dispatch. The EELD pur-
sues a steadiness between cost and emission. The EELD
problem can be expressed as,

Minimize C f1, fnð Þ (9)

where “n” can be 2 or 3 or more, depending on the number
of objective functions. This equation is minimized accord-
ing to the limitations given in (2) and (4).

As ELD problem deals with the reduction of the total
fuel cost of the system with any rate of emission. And eco-
nomic emission dispatch (EED) problem deals with the
reduction of the total fuel cost of the system without any
rate of emission. The behavior of emission dispatch from
thermal power plants is inversely related to the system
operating cost. For the economic operation of the power
system, the balance between fuel cost and emission must
be required which makes the optimization problem
multi-objective.

The multi-purpose optimization above can be completed
using fuzzy set theory together with all conventional opti-
mization techniques [28, 32], weighted sum method, and
many other techniques. Once again, the multi-purpose
problem mentioned above can be resolved after the EELD
problem has been changed to a single optimization problem
by introducing the concept of price penalty factor (PPF)
[46]. According to the concept of the penalty coefficient,
the total operating price of the system is the cost of pro-
duction plus estimated emissions costs. If the number of
objective functions is two, i. By considering fuel costs and
NOX emissions, the overall objectives can be formulated
using PPF and represented as follows

Minimize
Xn

i¼1
wFi Pið Þ þ 1� wð ÞhEi Pið Þ� �

(10)

Here, “h” is a penalty price factor that combines issu-
ance costs with normal fuel costs, and “w” is a comprom-
ise parameter in the range [0, 1]. This equation is
minimized depending on demand constraints and gener-
ation capacity constraints according to (2) and (4). When
the value of w is 1, the objective function represents the
fuel consumption of the generating function, and when w
is 0, the objective function is only an emission function. It
is very difficult to make decisions that will produce the
best compromise decision (BCS) that approaches the two
best decisions. Fuel costs increase and emissions costs
decrease when w decreases in steps 1 to 0. The problem

becomes a pure EED that only minimizes emissions when
w equals zero.

The limited problem of equation optimization (10) can
be completed together with conditions (2) and (4) for the
near global optimum generation for the selected value w.
The Pareto front based on the dominant solution can be
obtained by solving the problem several times with differ-
ent values of w. However, it may not be the most compro-
mising solution obtained, which can be defined as such
with the same percentage of the near global optimum solu-
tion that is compatible with ELD and EED. BCS can be
obtained only by setting w to 0.5 [31] when the h param-
eter chosen takes the fuel cost component and emission
costs in the objective function to the same level. The opti-
mization process tries to give more importance to fuel
costs than emissions costs, and vice versa if the fuel cost
component is (Eq. 10) greater than the corresponding pub-
lishing costs. In addition, fuzzy-based strategies [28] and
competition-based methods [10] may not lead to satisfy-
ing results.

Recently, Rajasomashekar et al. [31] proposed an equa-
tion to find out the effective solution of multiobjective
problems. The disadvantages of the existing approach are
overcome after expressing the functions of the two targets
of Eq. (10) in a modified way, after component normaliza-
tion, fuel costs and emissions to provide relative equality
for both purposes. The revised overall objectives can be
represented as follows:

Min C ¼
Pn

i¼1 Fi Pið Þ�F1min

F1max � F1min0

	 


þ 1� wð Þ
Pn

i¼1 FXi Pið Þ�F2min

F2max � F2min0

	 

(11)

where Fxi(Pi) is the value of emissions and Fi(Pi) is the
total cost of generation. However, F1max, F1min, F2max,
F2min values can be obtained after solving the ELD and
EED problems separately using (1) and (8) respectively
under conditions (2) and (4). Because the cost and emis-
sion functions are conflicting. Therefore, the solution to the
ELD problem returns. F1min, F2max. Similarly, the solution
to the ELD problem gives the value F1max, F2min. Modified
normalized representations of objective functions for EELD
problems have the following advantages [31]:
i. Equation (11) eliminates the use of the price penalty

factor, which is one of the advantages (because the PPF
calculation method usually requires several estimates).

ii. In addition, this new problem formulation offers the
best compromise solution (BCS) when w is set to 0.5
[31] and the entire solution process only includes three
cycles to solve the ELD, EED, and EELD problems.
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However, fuzzy-based strategies require several imple-
mentation solutions with different w values. The existing
approach provides a solution where the fuel savings are
very close to the best fuel savings while moving the emis-
sions component away from the best emission points and
vice versa. This shows that the relative importance associ-
ated with the two goals is not equal. However, according
to [31], the process of optimizing the new problem formu-
lation (11) adds almost as important to the cost of fuel and
component emissions and places its value in the same
range. The amount where the most uncompromising deci-
sions are reduced by the world’s best fuel costs and emis-
sions, uses the following indicators:

Fuel cost performance index:

FCPI ¼
Pn

i¼1 Fi Pið Þ�F1min

F1max � F1min0

	 

� 100

Emission cost performance index:

ECPI ¼
Pn

i¼1 FXi Pið Þ�F2min

F2max � F2min0

	 

� 100

3. REAL CODED CHEMICAL REACTION
OPTIMIZATION

This segment presents an intriguing modern optimization
algorithm named chemical reaction optimization (CRO),
which was recently proposed in [39].

CRO hardly imitates whatever occurs to molecules in
chemical reaction systems. Energy is usually released dur-
ing each chemical reaction, and products usually have less
energy than reactants. In terms of stability, the lower the
energy of substance stability is more. In a chemical reac-
tion, the initial reagent undergoes a series of collisions in
an unstable high-energy state, passes through several
energy barriers, and turns into a low-energy end product.
Therefore, the product is always more stable than reagents.
It is not much challenging to define the correspondence
between optimization and chemical reactions. Both aim to
find a global optimum for different purposes, and the pro-
cess develops gradually. With these findings, Lam et al.
[38] metaheuristic inspired by chemical reactions was
developed as CRO in 2010.

However, this document is an extension of the CRO.
CRO has proven to be a triumphant optimization algorithm
among various applications [39], which is largely a discrete
optimization problem. To make this optimization technique
suitable for problems with ongoing optimization, Lam
et al. [39] introduced a transformed variant of CRO in

2012 termed as real encoded chemical reaction optimiza-
tion (RCCRO).

The next subsections describe the main components
based on the design of chemical reactions, Molecules and
elementary reactions. The steps for RCCRO's main opera-
tions are explained below and major components of
RCCRO are also discussed below.

3.1. Molecules

Manipulated agents that are involved in the reaction are
known as molecules. The three basic features of each mol-
ecule are:
1. Molecular structure X,
2. Present potential energy (PE),
3. Present kinetic energy (KE), etc.

The meaning of the attribute is given below:
Molecular structure: X is the solution presently owned

by a molecule. Be contingent on the problem; X can be in
the form of numbers, array, arrays, or even diagrams.

Current PE: PE is the objective function of the current
molecular structure X, i.e., PEX ¼ f(X).

Current KE: KE provides molecular tolerance to sustain
a worse molecular structure with higher PE than existing.

3.2. Elementary Reactions

There are various types of collisions at CRO. This collision
occurs between a molecule or between a molecule and the
container wall. Depending on the type of collision, differ-
ent elementary reactions occur, each of which may have
different ways to control the energy of the molecules
involved. The four varieties of elementary reactions that
normally occur are
1. Ineffective wall collisions;
2. Decomposition;
3. Ineffective collisions between molecules;
4. Synthesis.

Ineffective collision and wall decomposition are the
reaction of one molecule when the molecule hits the con-
tainer wall. Ineffective intermolecular collisions and syn-
thesis involved in many molecules. The successful
completion of an elementary reaction leads to an internal
change in the molecule (that is, an updated attribute in the
profile). Several varieties of elementary reactions are
explained here.

3.2.1. On Wall Ineffective Collision. When a molecule hits
the wall and bounces back, the structure of the molecule
and PE changes slightly. Because the collision is not so
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strong, the molecular structure produced is not much differ-
ent from the original. If X and X0 represent the molecular
structure before and after collisions on the wall, this colli-
sion tries to convert X to X0 which is adjacent to X, i.

X 0 ¼ X þ D (12)

where D is perturbation with molecules. Many probability
distributions can be used to create probabilistic disorders.
This document uses the Gaussian distribution. As the molecu-
lar structure changes, PE and KE also change from PEX to
PEX0 and KEX to KEX0. This change will only occur if

PEX þ KEX � PEX 0 (13)

The change is not allowed and the molecule retains its
original X, PE, and KE, if (13) does not hold. Due to inter-
actions with the container wall, a portion of the KE from
the molecule is extricated and stored in a central energy
buffer (buffer) after the transformation is complete. The
loss of KE depends on the random number a1 2
[KELossRate, 1], where KELossRate ¼ CRO parameter.
KE is updated and the buffer is displayed as

KEX 0 ¼ PEX � PEX 0 þ KEXð Þ � a1 (14)

buffer ¼ buffer þ PEX þ KEX � PEX 0ð Þ � 1� a1ð Þ (15)

3.2.2. Decomposition.
PEX þ KEX � PEX1

0 þ PEX2
0 (16)

Let,

temp1 ¼ PEX þ KEX�PEX1
0�PEX2

0 (17)

then

KEX
0
1
¼ k � temp1 and KEX

0
2
¼ 1� kð Þ � temp1

where k is a random number uniformly generated from the
interval [0, 1]. (16) holds only when KEX is large enough.
Because of energy conservation, X sometimes does not
have enough energy (PE and KE) to maintain its trans-

formation into X
0
1 and X

0
2: The amount of energy stored in

the central buffer (buffer) can be used to encourage decay
to help change. In that case, the modified condition is

PEX þ KEX þ buffer � PEX
0
1
þ PEX

0
2

(18)

The new KE for resultant molecules and buffer are

KEX
0
1
¼ temp1þ bufferð Þ � m1 � m2 (19)

KEX
0
2
¼ temp1þ bufferð Þ � m3 � m4 (20)

buffer ¼ bufferþ temp1� KEX
0
1
� KEX

0
2

(21)

where values of m1, m2, m3, and m4 are taken randomly in

between [0, 1]. To generate X
0
1 and X

0
2, any mechanism

which creates X
0
1 and X

0
2 quite different from X, is accept-

able. However, this document uses the method mentioned
in Part III B [39].

3.2.3. Intermolecular Ineffective Collision. When two mole-
cules collide and then bounce, collisions between molecules
are ineffective. The effect of changing molecular energy
resembles an ineffective wall collision reaction, but more than
one molecule is involved in this elementary reaction and KE
is not drawn in a central energy buffer. Like an ineffective
wall collision, this collision is not fierce; therefore, new
molecular structures are created around the structure of the
previous molecules. In this paper, new molecular structures
are made according to the same concept as ineffective on
wall collisions. Suppose, the original molecular structures are
X1 and X2 are transformed after the collision and two new

molecular structures are X
0
1 and X

0
2 respectively. The two PE

is changed from PEX1 and PEX2 to PEX1 and PEX2 : The two
KE is changed from KEX1 and KEX2 to KEX

0
1
and KEX

0
2
: The

change to the molecules is acceptable only if

KEX
0
1
¼ PEX1 þ PEX2 þ KEX1 þ KEX2 � PEX10 � PEX2

0ð Þ
� aaa1

(22)

KEX20 ¼ PEX1 þ PEX2 þ KEX1 þ KEX2 � PEX1
0 � PEX2

0ð Þ
� 1� aaa1ð Þ

(23)

PEX1 þ PEX2 þ KEX1 þ KEX2 � PEX 0 (24)

where aaa1 is a random number uniformly generated in the
interval [0, 1]. If the condition of (22) fails, the molecules
maintain the original X1, X2, PEX1 , PEX2 , KEX1 , and KEX2 :

3.2.4. Synthesis. Synthesis is the process by which two or
more molecules (in this book, two molecules i) collide
with each other and form molecules X0. Change is turbu-
lent. Like decomposition, any mechanism that combines
two molecules into one molecule can be used. This docu-
ment uses the method of making X0 mentioned in Section
IIIB [39]. Both PE switch from PEX1 and PEX2 to PEX :

“Both features have been changed from KEX1 and KEX2 to
KEX :” Changes can be accepted if

KEX 0 ¼ PEX1 þ PEX2 þ KEX1 þ KEX2 � PEX 0 (25)

The new value of KE of the resultant molecule is

KEX 0 ¼ PEX1 þ PEX2 þ KEX1 þ KEX2 � PEX 0 (26)

If the condition of (25) is not satisfied, X1, X2 and their
related PE and KE are preserved. The pseudo codes for all
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above-mentioned elementary reaction steps are available
in [39].

4. OPPOSITION BASED LEARNING

Opposition-based training (OBL) explained by Tizhoosh
[40] to improve computational performance and expedite
the convergence rate of several optimization techniques.
OBL has been proposed to improve application decisions
taking consideration of the current population and the
opposite population. Many researchers have successfully
applied this learning process in a variety of soft computing
techniques [47–49]. Here, in one-dimensional space, oppos-
ite numbers and opposite quasi are shown. These defini-
tions can easily be extended to higher dimensions.

If x is the real number between [qa, qb], its opposite
number x0,

x0 ¼ qa þ qb � x (27)

If xbe is the real number between [qa, qb], its quasi-
opposite point, xqo

xqo ¼ rand qc, xoð Þ (28)

where qc is the center of [qa, qb] and can be calculated as (qa
þ qb)/2, and rand (qc, xo) are random numbers that are evenly
distributed among qc and x0. The same lucidity can be used to
reflect the quasi-opposite point of xqo and hence get the quasi-
reflected point of xqr. Are there real numbers between [qa, qb].
Then the quasi-reflected point xqr is defined as

xqr ¼ rand qc, xð Þ (29)

where randðqc, xÞ is a random number uniformly distributed
between qc and x: Details on OBL are available in [40, 41].

4.1. ORCCRO Algorithm for EELD Problem

Detailed steps of the RCCRO algorithm are given in [39].
This subsection describes the method for executing the
ORCCRO algorithm to resolve EELD problems. The
chronological steps of the ORCCRO algorithm to solve the
EELD problem are as follows:
1. Representation of molecular structure X and OX quasi-

opposite molecular structure: Because estimators for the
EELD problem of cost minimization and emissions
minimization are active power generators, they
represent separate molecular structures.

2. For initialization, select the number of generator units
and the total number of molecular structures.
The complete molecular structure is represented in the
form of the following matrix:
X ¼Xi¼ X1,X2,X3, :::,XPopSize½ � where i¼1,2,:::,PopSize:

In case of the EELD problem, each molecular set is
presented as:
Xi¼½Xi1,Xi2,:::,Xim�¼ ½Pgij�¼ ½Pgi1,Pgi2, :::,Pgim�; where
j¼1,2, :::,m: The element Xij of Xi is the jth position
component of the ith molecule set in a similar fashion,
form quasi-opposite molecular set using (28) with
satisfying different constraints of (4) and (5).
The complete quasi-opposite molecular set is
represented in the form of the following matrix:

OX ¼OXi¼ OX1,OX2,OX3, :::,OXPopSize½ �
where i¼1,2, :::,PopSize:

In case of the EELD problem, each quasi-opposite
molecular set is presented as:

OXi¼½OXi1,OXi2, :::,OXim�¼ ½Pgij�
¼ ½Pgi1,Pgi2, :::,Pgim�;j¼1,2, :::,m

3. Initialization of molecular theorem: Every single
element of the molecular structure matrix and a set of
opposing pseudo molecules, i.e., each element of the
given set of X molecules is arbitrarily initialized
ineffective active power, the upper and lower limits of
the power plant and each element of the molecular set
as opposed to OX is initialized using (28) in the actual
power limit based on (4) and (5).

4. Estimated PE: In the case of this EELD problem, the
potential PE energy of each group of molecules is
represented by the total fuel consumption for
generation or emissions for all generators of a certain
set of molecules. For ELD problems calculated by (1)
for valve point load systems. For EED problems,
calculated using (8) for complex emission systems. Use
(11) of PE is calculated for different values of w in the
case of EELD problems.

5. Because (11) contains the terms F1max, F1min, F2max,
F2min, it is, therefore, necessary to obtain the values of
this term to solve the ELD and EED problems.
Therefore, you must first start the ELD and EED
programs before you can start the EELD program.

4.2. Algorithm to Solve EELD Problems Are
Given Below

Step 1: In the initialization process, the number of gener-
ator units, number of molecules are defined. Determine the
maximum and minimum capacity of each generator. qb
and qa are defined as the maximum and minimum capaci-
ties of each generator, Jr (parameter of OBL), power
demand, loss coefficient matrix for calculation of transmis-
sion loss. Also initializing RCCRO parameters such as
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KELossRate, MoleColl, Buffer, InitialKE, a, b, and so on.
Set the maximum number of iterations.

Step 2: Initialize the value w. Set the initial value
to w¼ 0.

Step 3: Initialize each element of a particular set of
molecules from the matrix and a set of quasi-opposite OX
molecules using the concept mentioned in “initialization of
dual molecules.” Each set of matrix molecules and the OX
matrix must satisfy the equality condition (2) using the eas-
ing generator concept presented in Section 2.1.

Step 4: Calculate the PE for each molecule set of the
molecular structure matrix X quasi-opposite molecular
matrix OX, based on (11), for given initial kinetic energy
(KE) InitialKE.

Step 5: Based on the PE values, sort out the best sets of
solution from the sets of molecule and sets of quasi-opposite
molecules. Then create the new molecular matrix, which
gives the best value of (11) for the specified value of w.

Step 6: Make random number b 2 [0, 1]. If b is greater
than MoleColl or if there is only one molecule (this condi-
tion occurs at later in an iterative procedure), do a unimol-
ecular reaction, if not do an intermolecular reaction.

Step 7: When the reaction of one molecule is selected,
randomly select one molecule set from the whole matrix X
and see if it meets the decomposition criteria.

Step 8: If the intermolecular reaction is chosen from step 6,
select two (or more) random number of molecules from the
molecular matrix X and test the synthesis criteria (KE�b).

Follow the synthesis steps if the synthesis criteria are
met. Create a new set of molecules from the two selected
sets of molecules by following the procedure described in
Section IIIB [39]. Calculate PE from a new set of mole-
cules. If, after making a new molecule, condition 25 is
met, then (26) modifies a new set of molecules.

Perform ineffective collisions between molecules if the con-
ditions mentioned in step 8 are not met. Make two new mole-
cules next to the selected molecular group according to the
Gaussian distribution and procedure described in paragraph
3.2.1. Calculate PE from a new set of molecules. If, after making
a new set of molecules, the conditions specified in (22) are met,
change the CE of the new set of molecules with (23) and (24).

Step 9: After each elemental reaction, the feasibility of
each new molecular group formed from the modified X
matrix is checked. Each element of a modified set of mole-
cules must meet the generator operating limits (4) and
energy consumption limits (2). If the elements of a series
of molecules violate a condition, proceed to step 6 and re-
apply the steps above to their old values (before the
molecular reaction occurs) until all conditions are met.

Step 10: The quasi-reverse molecular theorem (QOM)
can be formed as follows from the newly developed set of
molecules produced in the previous steps:

Pseudo molecular sets (QOM) newly produced must
meet the applicable requirements (4) and (5). If some ele-
ments of the opposite set of molecules initially violate the
upper or lower operating limits or limit the actual power
balance (2), discard the new pseudo-opposite molecule and
use step-10 above from its old value until all constraints
are met
if rand < Jr

for i¼ 1: PopSize
for j¼ 1: m

QOM(i, j) ¼ rand (qc(j), xo);
end

end
end

Step 11: Recalculate the PE of each newly created set
of molecules and the apparent set of opposite molecules.

Step 12: Based on the PE value, map the best solution
set from the molecular set and the quasi-opposite molecular
set. Then make a new molecular matrix.

Step 13: Identify the best set of molecules based on the
PE value. Here, the best term is used to refer to this
molecular generator power output circuit which shows the
minimum value of the objective function. If the best value
of the current iteration is higher than the best result until
the last iteration, the best value of the current iteration is
treated globally as the best solution and stored elsewhere
in memory by comparison in the next iteration. If not, the
best results until the last iteration will be treated globally
as the best solution and stored at this location for compari-
son in the next iteration.

Power outputs (p.u.)

Units Minimum cost Minimum emission

1 0.1271 0.4099
2 0.2977 0.4721
3 0.4536 0.5456
4 1.1175 0.3955
5 0.5290 0.5387
6 0.3146 0.5239
Total generation (p.u.) 2.8395 2.8857
Loss (p.u.) 0.0055 0.0517
Cost ($/hr) 602.4021 650.0566
Emission (Ib/hr) 0.2299 0.1941

TABLE 1. Minimum fuel cost and minimum emission obtained
by ORCCRO for test system-1 (PD ¼ 2.834 p.u.).

Data are highlighted with bold is the main objective data.
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Step 14: End the iterative process if the current iteration
is greater or equal to the maximum iteration. Save the best
performance value in the near global optimum Set Array.
If not, repeat steps 6 through 13.

Step 15: Increase the value of '' in step 0.05 and repeat
steps from step 3 to step 14 until the value of '' reaches 1.

Step 16: The best compromise solution: Calculate fuel
costs and emission cost for each set of solutions obtained for
different values of w. Use (1) and (8) to calculate fuel costs
and emission cost for each set. Calculate the FCPI and ECPI
according to the equation at the end of the paragraph for each
generation and fuel consumption. Estimate the absolute value
of the difference between FCPI and ECPI for each fuel used
for fuel and emissions. The best compromise solution is a
value that reaches a minimum absolute difference between
FCPI and ECPI. The production and fuel emissions associated

with this represent the best compromise between fuel costs
and emissions.

Units

Power outputs (p.u.)

NSGA [11] EA [31] CPSO EA [31] MOHS EA [31] BBO [31] RCCRO [51] ORCCRO

P1 0.2699 0.2752 0.2555 0.2908 0.2625 0.1931 0.2558
P2 0.3885 0.3752 0.3582 0.3908 0.3770 0.3396 0.3609
P3 0.5645 0.5796 0.5542 0.5506 0.5760 0.4828 0.6369
P4 0.6570 0.6770 0.7262 0.6650 0.6735 0.7085 0.7430
P5 0.5441 0.5283 0.5619 0.5420 0.5377 0.6935 0.4792
P6 0.4398 0.4282 0.4085 0.4179 0.4270 0.4492 0.3899
Total generation(p.u.) 2.8638 2.8635 2.8645 2.8571 2.8537 2.8667 2.8657
Loss (p.u.) 0.0298 0.0295 0.0305 0.0231 0.0197 0.0327 0.0317
Cost $/hr 618.686 617.570 614.790 617.297 615.221 616.0158 614.9665
Emission (lb/hr) 0.1994 0.2001 0.2010 0.1994 0.2002 0.2044 0.2036
FCPI 26.77 26.15 12.66 26.76 24.4402 28.57 26.3655
ECPI 22.76 22.96 16.58 21.83 24.5969 28.74 26.3971
Difference 4.01 3.19 3.93 4.93 0.1567 0.1700 0.0316

TABLE 2. Comparison of the best compromising solutions for test system-1 (PD ¼ 2.834 p.u.).
Data are highlighted with bold is the main objective data.

FIGURE 1. Convergence characteristic (fuel cost mini-
mization) (test system-1, PD ¼ 2.834 per unit), obtained
by ORCCRO.

FIGURE 2. Convergence characteristic for emission mini-
mization (test system-1, PD ¼ 2.834 per unit), obtained
by ORCCRO.

FIGURE 3. Tradeoff curve obtained by ORCCRO for test
system-1.
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Details flow chart of the algorithm applied in EELD problems is given below:

Bhattacharjee et al.: A Novel Oppositional Approach for Solving Different Economic Emission Dispatch Problems 489



5. NUMERICAL RESULTS AND
SIMULATION RESULTS

The code has been produced in MATLAB-2017B language
and run on 4-GB RAM computer on a 1.7GHz Intel
core i3.

5.1. Description of the Test Systems

Test system-1: IEEE 30 bus 6 generator system with fuel
consumption function and valve point load effect on the
emission stage function. A single path diagram of the
IEEE 30 bus 6 generator system is shown in [31]. Input
data such as fuel cost ratio, emission factors, generator
operating limits and loss ratios have been taken from [31].
The filling requirements are 2.834 per unit. The minimum
fuel costs and the minimum NOx results from the proposed
ORCCRO are listed in Table 1. The minimum fuel costs of
ORCCRO and minimum NOx emissions are 602.4021 $
and 0.19412 $, respectively. Comparison of the best

compromise results from ORCCRO, EA [11], CPSO [31],
HSA [31], BBO [31], and RCCRO [51] are listed in Table
2 for FCPI and ECPI in terms of minimum ORCCRO
costs, emissions results and other methods are also listed in
Table 2. The smaller difference between 0.0316 between
FCPI and ECPI for the testing system guarantees the stabil-
ity of ORCCRO in providing the best compromise solution.
The convergence characteristics of the IEEE 30 bus 6 gen-
erator system for minimum fuel costs and minimum NOx

emissions in the case of ORCCRO are shown respectively
in Figures 1 and 2. The compromise curves obtained by
ORCCRO using an objective function (11) for various val-
ues of w are shown in Figure 3. Because ORCCRO is a
stochastic simulation method, randomness in the simulation
results can be understood. Much research is needed to
understand the best results. The minimum, average and
maximum compromise solutions obtained by ORCCRO in
more than 50 trials are shown in Table 3. Again, EELD is
a real-time problem, so it is expected that each program
implementation approaches the near-global optimum solu-
tion. Table 3 clearly shows the extraordinary success of
100% ORCCRO. Table 3 shows that the average costs and

Methods

Total cost ($/hr) Total emission (Ib/hr) Average
simulation
time (sec)

No. of hits
to optimum
solution

Standard
deviationMax. Min. Average Max. Min. Average

ORCCRO 614.9665 614.9665 614.9665 0.2036 0.2036 0.2036 0.72 50 0.0000
RCCRO [51] 616.0954 616.0158 616.0190 0.2048 0.2044 0.2044 0.89 48 0.0200

TABLE 3. Minimum, average, maximum best compromise solution obtained by ORCCRO over 50 trials (test system-1, PD ¼
2.834 p.u.).

Data are highlighted with bold is the main objective data.

Units

Power outputs (MW)

Minimum
cost

Minimum
emission

1 55.0000 55.0000
2 80.0000 80.0000
3 106.9396 81.1341
4 100.5765 81.3637
5 81.5020 160.0000
6 83.0206 240.0000
7 300.0000 294.4850
8 340.0000 297.2701
9 470.0000 396.7657
10 470.0000 395.5763
Total generation (MW) 2087.0388 2081.5952
Loss (MW) 87.0388 81.5952
Cost ($/hr) 111,497.6308 116,412.4441
Emission (Ib/hr) 4572.1952 3932.2432

TABLE 4. Minimum fuel cost and minimum emission obtained
by ORCCRO for test system-2 (PD ¼ 2000MW).

Data are highlighted with bold is the main objective data.

FIGURE 4. Convergence characteristic for fuel cost mini-
mization (test system-2, PD ¼ 2000MW), obtained
by ORCCRO.
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emissions for a compromise decision (614.9665 USD, 0.2036
Ib) achieved by ORCCRO equal the minimum yield
(614.9665 USD, 0.2036 Ib). Also, the average simulation
time for ORCCRO is 0.82 sec. This is proof of ORCCRO's
computational efficiency which is very interesting. All of
these results signify the strength and superiority of ORCCRO.

Test system-2: Consider 10 generator systems that con-
tain valve points in the quadratic function of fuel costs and
emissions. Input data such as cost ratio, emission factors,

generator operating limits and loss ratios have been taken
from [35]. Power consumption is 2000MW. The minimum
fuel costs and the minimum NOx results from the proposed
ORCCRO are listed in Table 4. The minimum fuel costs
and minimum NOx emissions from ORCCRO are
111,497.6308 $and 3932.2432 Ib, respectively. Comparison
of the best compromise results from ORCCRO, MODE
[37], PDE [37], NSGA-II [37], SPEA [37], GSA [37], and
RCCRO [51] are listed in Table 5. The above method,
FCPI values are calculated and ECPI for ORCCRO min-
imum costs and emissions results are also listed in Table 5.
A smaller difference of 0.3687 between FCPI and ECPI

Units

Power outputs (MW)

MODE [27] PDE [27] NSGA-II [27] SPEA 2 [27] GSA [27] RCCRO [51] ORCCRO

P1 54.9487 54.9853 51.9515 52.9761 54.9992 55.0000 55.0000
P2 74.5821 79.3803 67.2584 72.8130 79.9586 80.0000 80.0000
P3 79.4294 83.9842 73.6879 78.1128 79.4341 85.6452 85.6467
P4 80.6875 86.5942 91.3554 83.6088 85.0000 84.1258 84.1269
P5 136.8551 144.4386 134.0522 137.2432 142.1063 136.5034 136.4904
P6 172.6393 165.7756 174.9504 172.9188 166.5670 155.5800 155.5642
P7 283.8233 283.2122 289.4350 287.2023 292.8749 300.0000 300.0000
P8 316.3407 312.7709 314.0556 326.4023 313.2387 316.6745 316.6806
P9 448.5923 440.1135 455.6978 448.8814 441.1775 434.1251 434.1352
P10 436.4287 432.6783 431.8054 423.9025 428.6306 436.5724 436.5834
Total generation (MW) 2084.327 2083.933 2084.25 2084.061 2083.987 2084.226 2084.227
Loss (MW) 84.3271 83.9331 84.2496 84.0612 83.9869 84.2264 84.2274
Cost ($/hr) 11.348� 105 1.1351 x105 1.1354 x105 1.1352 x105 1.1349 x105 113,355.7453 113,126.7510
Emission (lb/hr) 4124.9 4111.4 4130.2 4109.1 4111.4 4121.0684 4146.7286
FCPI 40.33 40.94 41.56 41.15 40.54 37.81 33.1471
ECPI 30.12 28.01 30.94 27.65 28.01 29.52 33.5158
Difference 10.21 12.93 10.62 13.50 12.53 08.29 0.3687

TABLE 5. Comparison of the best compromising solutions for test system-2 (PD ¼ 2000MW).
Data are highlighted with bold is the main objective data.

FIGURE 5. Convergence characteristic for emission mini-
mization (test system-2, PD ¼ 2000MW), obtained
by ORCCRO.

FIGURE 6. Tradeoff curve obtained by ORCCRO for test
system-2.
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for testing systems guarantees the validity of ORCCRO,
offer the best compromise solution. The convergence char-
acteristics of 10 generator systems for minimum fuel costs
and minimum NOx emissions in the case of ORCCRO are
shown respectively in Figures 4 and 5. The compromise
curve obtained by ORCCRO uses an objective function
(11) for various values of w shown in Figure 6. The min-
imum, average, and maximum compromises obtained by
ORCCRO of more than 50 tests are shown in Table 6.
Again, EELD Because this is a real-time problem, it is
expected that program implementation will approach the
near global optimum solution. Table 6 clearly shows that
the success rate is 100% of ORCCRO. Table 6 shows that
the average costs and emissions for decisions reached by
ORCCRO (113,126.7510 USD, 4146.7286 Ib USD) equals
the minimum yield (113,126.7510 USD, 4146.7286 Ib

USD). In addition, the average simulation time for
ORCCRO is 0.5172 sec. This is evidence of computational
efficiency, durability and attractive ORCCRO advantages.

Test system-3: In this case, a system with 13 generators
and NOx emissions is taken. Unit costs and emission fac-
tors as well as operational constraints as in [31]. Lossless
transmission is here. The results of the minimum fuel costs
of ORCCRO, RCCRO and BBO [31], minimum NOx emis-
sions and the best compromise solution, FCPI and ECPI
are shown for demand 1800MW in Table 7 ORCCRO
emissions are slightly better than BBO. In addition, the dif-
ference between FCPI and ECPI obtained by ORCCRO,
RCCRO and BBO were 0.15, 0.451280 and 1.448, respect-
ively. The smaller difference between the FCPI and ECPI
for the testing system guarantees the superiority of
ORCCRO in terms of RCCRO and BBO to offer the best

Methods

Total cost
($/hr)

Total emission
(Ib/hr) Average

simulation
time (sec)

No. of
hits to

optimum
solution

Standard
deviationMax. Min. Average Max. Min. Average

ORCCRO 113,126.7510 113,126.7510 113,126.7510 4146.7286 4146.7286 4146.7286 0.5172 50 0.0000
RCCRO [51] 113,356.8528 113,355.7453 113,355.789656 4123.9824 4121.0684 4121.1849 0.9145 48 0.0200

TABLE 6. Minimum, average, maximum best compromise solution obtained by ORCCRO over 50 trials (test system-2, PD ¼ 2000MW).
Data are highlighted with bold is the main objective data.

BBO [31] ORCCRO BBO [31] ORCCRO

Units
Minimum

cost
Minimum
emission

Minimum
cost

Minimum
emission

Best compromise
solution

Best compromise
solution

1 628.3185 80.6939 628.3185 80.6407 179.5196 179.5195
2 149.5996 166.3076 222.7490 166.3287 299.1993 299.1993
3 222.7391 166.8711 149.5996 166.3287 297.5728 299.1992
4 109.8665 154.7728 109.8665 154.7331 159.7331 60.0000
5 109.8665 155.4193 109.8665 154.7331 159.7331 159.7331
6 109.8665 154.8674 109.8665 154.7331 159.7331 159.7331
7 109.8665 154.7250 60.0000 154.7331 159.7331 159.7331
8 60.0000 154.5205 109.8665 154.7331 60.0000 109.8665
9 109.8665 154.7622 109.8665 154.7331 60.0000 109.8665
10 40.0000 119.4327 40.0000 119.9637 40.0000 77.3999
11 40.0000 119.2917 40.0000 119.9637 114.7661 40.0000
12 55.0000 109.2010 55.0000 109.1876 55.0000 55.0000
13 55.0000 109.1249 55.0000 109.1876 55.0000 90.7495
Fuel cost ($/hr) 17,960.346a 19,098.756 17,963.8292 19,145.5677 18,081.483b 18,062.8862
Emission (ton/hr) 461.479 58.241 461.4805 58.2407 95.3095 92.6513
FCPI 0 100 0 100 10.641 8.38
ECPI 100 0 100 0 9.193 8.53
Difference 100 100 100 100 1.448 0.15

TABLE 7. Comparison of minimum cost, minimum emission and best compromising solutions for test system-3 (PD ¼ 1800MW).
aExact generation cost for the above schedule is 17,963.8298 $/hr which is more than in [31].

bExact generation cost for the above schedule is 18,084.8966 $/hr which is higher than that reported in [31].
Data are highlighted with bold is the main objective data.
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compromise solution. The convergence characteristics
determined by ORCCRO for minimum fuel costs and min-
imum NOx emissions are shown in Figures 7 and 8. The
compromise curve for the test system obtained from
ORCCRO is shown in Figure 9. It is clear from the graph
that the most obvious solution with the most compromises
is $18,062.8862/hr and 92,6513 tons/hr obtained when

w¼ 0.5. The minimum, average and maximum compromise
solutions achieved by ORCCRO of more than 50 trials are
listed in Table 8. The minimum, average and maximum
compromise solutions (18,062.8862 USD/hr and 92,6513
tons/hr) achieved by ORCCRO more than 50 trials are the
same. This shows that ORCCRO reached a minimum solu-
tion in all 50 cases at 100% convergence. The ORCCRO
simulation time needed to reach the minimum solution is
0.85 sec. This is better than the results shown in [31]
(1.46 sec). Simulation studies show that ORCCRO per-
forms better than many other techniques such as BBO,
while solving the non-convex problem of ELD, EED,
and EELD.

5.2. Determination of Parameters for ORCCRO

It is necessary to get the correct values of various parame-
ters such as the level of kinetic energy loss (KELossRate),
initial kinetic energy (InitialKE), a, MoleColl and near glo-
bal optimum solutions using the RCCRO algorithm.
Similar to the RCCRO jump rate (Jr) parameter, OBL
must also be optimized for better performance. For values
different from this parameter, the variance among FCPI
and ECPI (based on the finest compromise solution) for the

FIGURE 7. Convergence characteristic for fuel cost mini-
mization (test system-3, PD ¼ 1800MW), obtained
by ORCCRO.

FIGURE 8. Convergence characteristic for emission mini-
mization (test system-3, PD ¼ 1800MW), obtained
by ORCCRO.

FIGURE 9. Tradeoff curve obtained by ORCCRO for
test system.

Methods

Total cost
($/hr)

Total emission
(ton/hr) Average

simulation
time (sec)

No. of
hits to

optimum
solution

Standard
deviationMax. Min. Average Max. Min. Average

ORCCRO 18,062.8862 18,062.8862 18,062.8862 92.6513 92.6513 92.6513 0.8500 50 0.0000
RCCRO [51] 18,041.0284 18,038.8366 18,038.9243 86.0214 85.6546 85.6693 1.0512 48 0.0200

TABLE 8. Minimum, average, maximum best compromise solution obtained by ORCCRO over 50 trials (test system-3, PD ¼ 1800MW).
Data are highlighted with bold is the main objective data.
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13 generators (test system-3) is estimated and shown in
Table 9.

Changing the size of the molecular structure al the per-
formance of ORCCRO. Large or small values of molecular
structure size may not provide near global optimum values.
For each molecular structure of size 20, 50, 100, 150, and
200, 50 tests were carried out using test system-3. Table
10 shows ORCCRO performance for various sizes of
molecular structures. The molecular structure size of 50
has made the global solution for testing systems more con-
sistent and efficient.

After a number of careful experiments, the near global
optimum value of the following ORCCRO parameters is
finally settled: molecular structure size ¼ 50, InitialKE¼ 600,
KELossRate¼ 0.8, b ¼ 300, MoleColl¼ 0.3, Jr ¼ 0.3, buf-
fer¼ 0, and a ¼ 300.

5.3. Results of Test Systems

Results obtained are shown in tabular form and compared
with other existing methods.

6. CONCLUSION

This paper shows the successful use of ORCCRO to solve
small and large EELD problems. More sophisticated fuel
price features are considered (e.g., loading valve points
considered in all test systems). The proposed approach has
achieved better results than other algorithms, taking into
account single and multipurpose functions. It was also
observed that ORCCRO can integrate with quality solu-
tions in a very short time, is computationally efficient, and
has better and more stable convergence properties than
other optimization techniques. With promising results, the
ORCCRO method seems to be an important tool for solv-
ing some other complex optimization problems in
the future.
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TABLE 9. Effect of different parameters on performance of ORCCRO, based on difference between FCPI and ECPI for test system-3.
Data are highlighted with bold is the main objective data.

Molecular
structure size

No. of hits to
best solution

Simulation
time (sec) Max. difference Min. difference Average difference

20 48 0.71 0.1518 0.1506 0.1506
50 50 0.85 0.1500 0.1500 0.1500
100 44 0.98 0.1520 0.1511 0.1512
150 42 1.14 0.1530 0.1526 0.1526
200 38 1.71 0.1562 0.1555 0.1556

TABLE 10. Effect of molecular structure size on performance of ORCCRO, based on difference between FCPI and ECPI for test
system-3.

Data are highlighted with bold is the main objective data.
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