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ABSTRACT

An efficient optimal power flow (OPF) algorithm allows the finest setting of the plant by solving
multi-objective optimization problem to minimise the overall operating cost. This paper proposes the
quasi oppositional backtrack search algorithm (QOBSA) for optimal setting of OPF control variables.
The QOBSA is stochastic algorithm which gives committed and robust results compared to the
traditional methods. This technique has been implemented to test the control parameters for the [IEEE
30-bus with single and multi-objective functions like the minimization of fuel cost, minimization
of total voltage deviation (TVD), voltage stability enhancement, emission reduction, and multi-fuel
cost minimization. The result provides better voltage profile at every bus based on L-index which
in turn greatly reduces the burden on load buses. The QOBSA code has been developed in the
MATLAB platform and tested with the help of IEEE 30-bus and the outcomes have been compared
with ongoing literature.
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1. INTRODUCTION

Carpentier has introduced the term optimal power flow (OPF) in 1962 (Carpentier 1962). The OPF
is an important tool for an efficient power system operation and planning in modern power system
(Shaheen, Ragab, and Sobhy 2016). The main purpose of the OPF is to set control variable in such a way
that economic and secure operation of power system take place. Active and reactive power generations
at the generating station, reactive power output from the different reactive power sources like shunt
capacitor, on load tap changing transformer etc. are chosen to control their parameters for getting
multi-objective solutions. The OPF problem is a non-linear and highly constrained problem. Many
traditional optimization techniques have been successfully implemented to solve the OPF problems.
Most common traditional techniques can be mentioned as gradient algorithms (Peschon, Bree, and
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Hajdu 1971; Burchett et al. 1982), Newton method (Crisan and Mohtadi 1992), linear programming
(LP) (Lobato et al. 2001; Zehar and Sayah 2008), quadratic programming (QP) (Reid and Hasdorff
1973; Granelli and Montagna 2000) and interior point method (IPM) (Vargas, Quintana, and Vannelli
1993; Momoh and Zhu 1999). These methods have average convergence characteristics and some
of them widely popular in common practice. However, these methods give local optimum solution
for complex objective function problems in a power system. Many meta-heuristic techniques, single
objective and multi objective structures (Houssein et al. 2022a, 2022b; Bhattacharjee et al. 2014, 2015,
Sony et al. 2022; Rani 2016; Das 2014) are also used to solve OPF problems. The modelling of OPF
reflects operating issues as per its objective function. Genetic algorithm (GA) (Bakirtzis, Anastasios
G., etal. 2002; Attia, Turki, and Abusorrah 2012) is one of the most popular techniques. In (Bakirtzis,
Anastasios G., et al. 2002), authors have used enhanced genetic algorithm (EGA) to solve the OPF
problem. Various control variables such as switchable shunt devices, transformer tap-setting, generator
bus voltage magnitudes, and active power outputs are considered for the optimization. Authors have
proposed adaptive genetic algorithm in (Attia, Turki, and Abusorrah 2012). The main contribution,
for adaptive genetic algorithm, is described as adjusting population size. Kritsana and Akihiko (2009)
have presented improved evolutionary programming (EP) to solve OPF problem considering voltage
stability problem. Differential evaluation (DE) based approach has been proposed by the authors
(Abou, Abido, and Spea 2010). In the proposed DE method, non-smooth piecewise quadratic function
has been used. Improved evolutionary programming (IEP) has been offered by authors (Ongsakul,
and Tantimaporn 2006) with Gaussian and Cauchy mutation operators for solving OPF problems.
Multi-objective OPF has been solved with particle swarm optimization (PSO) (Choudhury and Patra
2016). Simulated annealing optimization technique is used in (Roa-Sepulveda and Pavez-Lazo 2003).
Authors Roy, Ghoshal, and Thakur (2010) have proposed a novel biogeography based optimization
(BBO) method to solve OPF with valve point non-linearities of generators. Optimal reactive power flow
problem has been solved using artificial bee colony algorithm in (Kiirsat and Kili¢c 2012). Modified
shuffle frog leaping algorithm (Niknam, Narimani, Jabbari, and Malekpour 2011) has been applied
to OPF considering environmental and emission issues. Modified sine-cosine algorithm (MSCA) has
been applied to OPF problems considering fuel cost minimization and reactive power allocations in
(Attiaa, Sehiemya, and Hasanienb 2018). An Enhanced genetic algorithm (EGA) called NSGA -III
integrated with adaptive elimination stratagem (Zhangab, Wanga, Tanga, Zhoua, Zengb 2019). A
modified teaching learning based optimization for multi-objective OPF problem implemented in
(Haghighia, Seifia, and Niknamb 2014). Quasi- Oppositional modified Jaya algorithm for multi-
objective implemented in (Warid, Hizam, Mariun, and Wahab 2018).

A new optimization technique backtracking search optimization algorithm (BSA) is proposed by
Pinar Civicioglu (2013). This technique is based on the concept of selection, mutation, and crossover
operators. The BSA can control the value of search direction effectively in mutation operation. The
operators generate very large value which helps to find solution from its current state. This accelerates
the process of finding global solution. The operators can also generate small values of the variables
at that same time. This helps the algorithm to find a solution in the neighbourhood of its current state
and the same suitable to get global search value. There is another advantage of the BSA is that it has
memory to store population from randomly chosen past generation. This is used in generating search
direction matrix for next iteration. The memory of BSA helps to gain advantage from past value and
to find next generation. The crossover operator uses a complex and nonlinear structure to create new
individual in each generation. These attractive and versatile qualities of BSA (Bhattacharjee K., et al.
2021, 2018, 2015) motivated authors to implement in solving multi objective OPF problem with BSA.

The key contributions of this work can be mentioned as, (a) the QOBSA has been introduced for
the first time to solve the OPF problem in this paper, (b) crucial control variables for OPF e.g. the
minimization of fuel cost, minimization of TVD, voltage stability enhancement, emission reduction,
and multi-fuel cost minimization have been accounted to build robust OPF algorithm, (c) L-index
has been used in this work to encourage improved voltage profile for the system, (d) the proposed
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approach has been verified with IEEE 30-bus standard system, and the outcome shows the superiority
of the algorithm over some of the recently developed approach.

Section 2 of the manuscript provides a mathematical formulation of the OPF problem. Section
3 provides a short description on BSA algorithm. Section 4 presents the oppositional based leaning.
Section 5 provides information on steps to follow to get solution of OPF problem by BSA. The various
test system and results are discussed in section 6. The conclusion of the manuscript is given in section 7.

2. PROBLEM FORMULATION

The solution of OPF problem is challenging due to non-linearity, non-convexity, and highly constraint
problem definition. The OPF problem is used to optimize given objective, subjected to system physical
limits (Bhattacharjee, Bhattacharya, Shah, and Patel 2021). Due this complexity, OPF problem remain
popular but challenging task among power system researcher. The OPF problem can be computed
as follows.

The outcome of OPF problem is taken under consideration of steady state performance of
power system with different set of objective functions. This can be done through optimal adaption of
independent variable while fulfilling various inequality and equality constraints. The OPF problem
may be illustrated in mathematical form as given below:

MinimizeJ = {J1 (a:),J2 (m), J, (x) ...... J, (m)} 1)
Subjectedto,G, (x)zO,i: 0,1,... ,m 2)
Hi(x):O,z': 0,1,....,p 3)

where J (x) represents the m” objective function. There are m number of objective functions.

Here m and p are number of equality and inequality constraints.

2.1. Problem Objective

The prime objective of solving OPF problems includes environmental, economic, and technical
benefits. Most common objective function found in common practice is minimizing FC. It is
considered as primary or most common economical objective function. Other technical objectives can
be mentioned as reduction of APL and TVD, voltage stability improvement with help of L—index,
etc. Lastly, minimizing the total emission can be observed as environmental objective.

As mentioned earlier one of the most popular objectives for the OPF problem is the minimization
of FC for generated active power of an interconnected system. It is mathematically formulated in
quadratic function and can be represented as the F1 is expresses as follows:

MinF, = Nza(ai +0p, + cz.PGf) ($/h) @
i=1

The second objective function of the OPF problem is APL. minimization (F,). It can be expressed
as follows:
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Min F,(z) = f(q{ (V2 +V2 —2VV cosd, ) )

i=1

The third objective (F;) is to minimize the TVD at PQ buses. It can be stated as follows:

Min E(z) =S|V, 1 ©
i=1

The fourth objective function is the total emission minimization. Nowadays the superfluous
emissions of greenhouse gases leave adverse effect to the environment. This is implied that the fossil-
fuel based power plants have greenhouse gases as a major by-product. One of the main motives of
this work is to enhance social welfare by decreasing these emissions. The non-linear form of emission
function can be expressed as follows:

AF,
g

Min F, (a:) = §10’2 (ai + bz.PG‘ + CLPQZ) + (ton / hr) @)
i=1

The fifth objective function is enhancement of voltage stability. With help of popular (L — inde:c) ,

it can be mentioned as follows:

L= kZ?NjQ%z(eﬁ@ ~6) i=123...NL @)
J
B, = _[YLLTl [YLG] )

Now, the maximum value of L] is taken as a global indicator for the complete system. Lower
values of I assures the improved stability of the system:
F (z)=L,, =max(L,)j=12..,NL (10)

2.2. Constraints for the Proposed Objective Functions

Same as the other optimization problems the OPF problems are also dealt with equality and inequality
constraints.

2.2.1 Equality Constraints

Here, r is the set of equality constraints representing the typical load flow equations:

G

P .—P — VlZﬁVJ (sz sin 9@ + sz cos 07]_) =0
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where:

i=123,...,NB )
NB .
Q, — Q) — szzllfj (sz sinf, + B, cos 9”.) =0

where:

i=123,....NB (12)

NB is total number of buses, P(: and QG are the active and reactive power generation,
respectively. Gij and Bij are the transfer conductance and Susceptance between bus 7and j,

respectively. Yij :Gij —#Bij is the admittance matrix. The phase angle difference 01], is between
voltages at buses i and j.

2.2.2 Inequality Constraints
Here, h is set of inequality constraints as follows.

2.2.2.1 Physical Limit of Generator

For all generator, including reference bus: active and reactive power outputs and voltages are limited
within their permitted lower and upper bound as follows:

V(hmm S VGi S VGYW{M s l — 1 e NG (13)
PG/L"LT," S PGl S PGl'V"(l-lf s i —_ 1 . NG (14)
Q&mm < QG[ < QGl’””‘" ,i1=1...NG ()

2.2.2.2 Physical Limit of Transformer

Tap setting of transformer are limited within their permitted lower and upper bound as follows:
T <T. <T.™i=1..NT (16)
2.2.2.3 Physical Limit of Shunt VAR Compensator

Shunt VA, compensator constraints permitted within their lower and upper bound as follows:

chmm S Qm S ch mazx , Z — 1’ . NC (17)
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2.2.2.4 Security Constraints

These include the constraints of voltage at load buses and transmission line loading. Voltage of each
PQ bus are restricted within their lower and upper limits. Line flow through each transmission line
is restricted by their capacity limits. These constraints are expresses as follows:

Vi <V <V i =1,...,NL (18)

S <8™i=1..,nl (19)

The Inequality constraints A, )\V,)\Q,/\S of dependent variables which contains PGl V.0, S,

can be included into an objective function as quadratic natured penalty terms so that final output
remains within operating limits. Penalty function can be expressed as follows:

9 NL 9 NG 9 NG 9
I, =T+ (PGX - Pé‘l”’) AT (VLI - VL{“") + /\QZ(QGI - ngl) A3 (5A - SZ””) (20)
i=1 i=1 =1

lim

Here, ™" is the limit value of dependent variable. If = is higher than the upper limit value or
x is lower than the lower limit value then it takes values as follows:

xrrla17$ >z
= min (21)

™ <™

max
lim

3. QUASI OPPOSITIONAL BACKTRACKING SEARCH ALGORITHM (QOBSA)

QOBSA algorithm has been discussed in two parts in this section. At first the conventional BSA
algorithm has been mentioned then the process for hybridization has been mentioned.
3.1 Backtracking Search Algorithm (BSA)

Itis a population based stochastic evolutionary algorithm. This is a bio-inspired algorithm. It replicates
and mostly similar to the social group of living creature return on random interval to the hunting
areas that were formerly found productive for getting food. The structure of BSA can be classified
into five processes i.e. initialization, selection-I, mutation, crossover, and selection-II. For the better
understanding of the basic BSA algorithm, the steps have been described in the following section.

3.1.1 Initialization

Same as the other optimization algorithms, BSA randomly generates the starting population within
its specified boundary condition:

fori=1: popsize
forj=1: problemsize
pop(z', j) = rand * (up(j) — low (])) + low (]) (22)

end
end
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where ¢ =1,2,3...,popsize; j=123,....,problemsize; low (]) and up(j) are the lower and
upper bounds of the problem size respectively.
3.1.2 Selection-1

As discussed above, this algorithm stores the location of enriching food resources. Previous location
is helpful to find feasible search dimension matrix. Historical population (hist _ pop) can be calculated

as follows:
hist _pop (z', j) = rand * (up (]) —low (])) + low (j) (23)

Here, hist _pop set is updated until a better fitness value is found. Historical population is
updated as follows:

if arand < brand (24)

hist _pop (i, j) = pop(i, j) (25)

where, arand and brand are random number between O and 1. After this order of hist _pop is
randomly shuffled as follows:

hist _pop =hist _pop (mndperm (popsize) , :) (26)

where, randperm is random permutation of popsize and it is used to change the position of different
set within the hist _pop .

3.1.3 Mutation

The starting form of trial population Mutant is generated using equation (27) and this process is
called as mutation:

Mutant=pop+F * (hist_pop - pop) 27

where hist _pop — pop is the search direction matrix and F is the amplitude of search direction
matrix. So it basically controls the search dimension matrix. Due to the experience of previous
generation, BSA generates trial population. The value of F' is given by F'=4 *randn , where

randn N (0,1) . Here, N is the standard normal distribution.

3.1.4 Crossover

The initial value of trial pop for the crossover is Mutant . The target population individuals belong
to trial individual with better fitness value. The crossover process of BSA divided into two steps. The
firststepuses, map , binary integer-valued matrix, is created. The size of map is popSize x problemSize .
The map indicates the individual trial population 7' to be updated with individual value of pop. If
map (i, j) =1, then trial pop updated with T’ (i, j) = pop (i, j) . In the second step, it uses mizrate
and it is used to control the individual population element which will mutate with the trial pop using
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(mixmte *rand * ProblemSize) . In this scenario, mizrate is relatively differing from the crossover

process works in other algorithms.

3.1.5 Selection-Il

This is the second stage selection. Trial population (T) and pop are compared with corresponding value
and then the pop is updated. After this, if best independent population ( pop) had superior fitness value

than global minimum value then global minimum value replace by best independent population ( pop) .

3.2 Opposition-Based Learning (OBL)

The conviction of OBL is given by Tizhoosh (2005) and Warid et al. (2018). This method accelerates
the rate of convergence and helps to find out global optimum solution. In this method, two populations
are to be generated, i.e. current population and opposition population within the feasible space. Here,
opposite number needs to be generated closer to the global solution then any randomly generated
number. Opposite number and opposite point are calculated as below Mandal and Roy (2011).

3.2.1 Opposite Number

Let y be a real number between [m, n] . Now, its opposition number y° is calculated as:
Y =m+n-—y (28)

where m and n are two minima and maxima points in search space.

3.2.2 Opposite Point
Here, P (yl, YyrYsreesY, ) is apointin ¢ -dimensional space, then the opposite point OP (yf A y; )

can be calculated as below:
Yy =m +n, —y, (29)

where:

Y, € [ml,nl];i =12,...,q

3.2.3 Quasi-Opposite Number

It is the number formed between the centre of feasible space and its opposite number. Here, y is any
real number between [m, n]. Its quasi-opposite point y™ is calculated as:

y* = mnd[m ; n ,yjp] (30)

Basic flow of OPF with QOBSA has been mentioned in the below steps:

Step 1: Initialize the penalty factors, mizrate . State the minimum and maximum limits of all the
dependent variable. Set termination criteria as Maxlter .
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Step 2: Initialize population as pop , gopop (Quasi-Opposite population) within the control limits.

Step 3: If gopop has better value than pop then update pop with that value. Run the load flow
using NR method. Check all the constraints; the constraints specified in equation (13) to (19).
If there is any violation of constraint, then go to step 2.

Step 4: Compute the value of fitness, fitness ( pop) for individual popsize and problemsize.
This paper contains different fitness functions so all the objective function taken under
consideration.

Step 5: Initialize the hist _pop using equation (23). Update hist _pop if equation (24) is true.
Next randomly shuffle the hist _pop using equation (26).

Step 6: Proceed with mutation process as per equation (27).

Step 7: Proceed with the crossover process as given above.

Step 8: Run the load flow again with the help of individual trial population (T ) . Trial population (T)
should fulfil the respective control limit for computed dependent variables. If this condition satisfies
then solution set to be considered as feasible solution. If the values are not within control limit then
solution can be previous solution. If all constraints are satisfied, then go for next objective function.

Step 9: gopop can be calculated centred on jumping rate with help of equation (30). The
jumping _rate is determined as follows:

a = jumpz'ng_mte| - — jumping _rate 3D

max min

b— g Mazlter — Iter 32)
Mazxlter
Jjumping rate =a—b (33)

considered at maximum and minimum

where a = jumping_mte| and b = jumping _rate|

min

value. Iter is present iteration.

Step 10: Compare the computed results with trial population (T) . The pop needs to be updated if

trial population (T) has better feasible solution. Sorting of all three populations is done then

whichever has a better solution than global solution, replace the current global solution with that
otherwise it is the same.

Step 11: Repeat the process again from step 2 for next iteration. If stopping criteria reached (in this
case, Mazlter ) then terminate loop and print the results.

4. SIMULATION AND RESULTS

In order to illustrate the effectiveness of the proposed QOBSA technique, it has been tested on IEEE
30 bus test system.
4.1 Characteristics of the Test System

Characteristics of IEEE 30-bus system shown in Table 1. The bus data, line data, generator data and
lower and upper limits of all the independent variables are presented in (Zimmerman et al.). The
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Table 1. Details of test system IEEE-30 bus system

System components Numbers Positions at buses/lines
Buses 30 -—--
Branches 41 -
Generators 6 Atbuses 1,2,5,8, 11 and 13
Shunt capacitors 9 Atbuses 10, 12, 15, 17, 20, 21, 23, 24 and 29
Transformers 4 lines 6-9, 6-10, 4-12, and 28-27

proposed algorithm has been applied to solve multi-objective function OPF problem with system
physical limits. The emission cost coefficient data taken from (Mahdi et al. 2019).

Voltage of each PQ bus is limited within their lower and upper bounds. Flow of line through
each transmission line is limited by their capacity limits.

4.1.1 Definition of Different Case Studies for OPF Problem

This work contains 11 case studies and their definition tabulated in Table 2. The case studies reflect
different objective functions. The main motive to simulate the case studies separately and all together
is to understand the effect of each of the parameters separately for the OPF.

4.2. Results of Single Objective Case Studies

Optimal settings of the independent variables, obtained in proposed QOBSA, are given in Tables
3 and 4. There are three events for the single objective case study. Here, event 1 considers the
minimization of FC. The convergence characteristic for FC is shown in Figure 1. The total FC is
decreased to 799.079 $/h compared to initial case FC of 901.88 $/h which gives reductions almost

Table 2. Different case studies involving single/multiple objective

Fuel cost V.D APL L-max Emission
Test System Case (Fl) (Fz) (F3) (El) (F:,))
1 i - - . R
2 - - i - -
3 i ii - - -
4 i - - i -
5 i - i - -
6 i - - - i
IEEE-30 bus 7 ii ii - ii _
8 i - i - i
9 i i - - i
10 i i i - -
11 i i i i -
12 i i i - i
13 i i i i i

10
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Figure 1. Convergence characteristics for case 1
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equal to 11.3985%. This elaborates the efficacy of the proposed algorithm for solving OPF problem.
Case 2 is about the minimization of APL. The convergence characteristics of APL minimization has
been shown in Figure 2. The comparison of the above case studies is described in Table 5.

4.3 Results of Bi-Objective Case Studies

In the single objective analysis, there may be violation of some quantities, like during case 1 there is a
violation of TVD. So this bi-objective study helps to improve the responses of those quantities. Here,
case study 3 advocates FC and TVD minimization. Case study 4 states FC and L-index minimization.
On the other side, case study 5 includes FC and APL minimization, and case study 6 includes FC
and emission minimization. Comparative studies of above test cases are given in Table 6. Figure
3, Figure 4, Figure 5, and Figure 6 show the results of case studies from 3 to 6. The utilization of
suggested QOBSA can leads to more aggressive solution results for various case studies compared
with method described in literature.

4.4 Triple Objective Cases

In this part of study, three objectives have been considered together. Here, case study 7 includes FC, TVD,
and L-max minimization. Case study 8 combines FC, APL, and emission minimization. Comparative
studies for the above test cases are given in Table 7. Figure 7 shows the results of case study 7. In case
studies 7 and 8, results of FC are better than the described in the literature. Moreover, in the case study
8, result of emission is better compared to describe in the literature. Similar explanations can be given
for case 9 and 10. The convergence characteristics for case 9 and 10 have been plotted in Figures 9 and
10. These results show a notable difference and effectiveness of suggested QOBSA algorithm.

Figure 2. Convergence characteristics for case 2
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Table 3. Simulation results for OPF problem of cases 1-6 for IEEE 30-bus power system

Downloaded

10/4/2
F Address

Min Max Igiatizl Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
]Dl 50 200 99.21 176.973 51.7938 174.7498 174.7781 173.0902 112.8198
P2 20 80 80 48.606 79.6016 48.7258 47.5106 48.6233 56.4426
135 15 50 50 21.445 50.0000 21.4475 21.0692 21.7382 29.6647
Pg 10 35 20 21.095 35.0000 224164 21.7741 23.6578 35.0000
]DH 10 30 20 11.90 30.0000 12.4906 13.5389 12.6303 28.6011
P13 12 40 20 12.00 40.0000 13.1155 13.7053 12.0000 26.3652
VYI 0.95 1.10 1.05 1.10 1.0686 1.0435 1.0734 1.0998 1.0694
V; 0.95 1.10 1.04 1.087 1.0645 1.0271 1.0561 1.0849 1.0563
V; 0.95 1.10 1.01 1.062 1.0484 1.0103 1.0301 1.0544 1.0071
V;; 0.95 1.10 1.01 1.067 1.0521 1.0017 1.0566 1.0634 1.0410
VYH 0.95 1.10 1.05 1.10 1.1000 1.0315 1.09 1.0994 1.0684
V;S 0.95 1.10 1.05 1.099 1.0993 1.0086 1.0963 1.1000 1.1000
Th (6 _ 9) 0.90 1.10 1.078 1.018 1.0321 0.9973 0.9666 1.0092 0.9829
le (6 _ 10) 0.90 1.10 1.069 0.934 0.9000 0.9442 0.9395 09111 0.9937
Tis (4 _ 12) 0.90 1.10 1.032 0.991 0.9595 0.9751 0.9558 0.9776 1.0359
T36 (28 - 27) 0.90 1.10 1.068 0.991 0.9624 0.9646 0.9411 0.9609 0.9671
ch 0 5 0.0 0.966 5.0000 2.4365 5.0000 4.7407 1.7407

12

continued on following page
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Table 3. Continued

Min Max Ig:::l Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
ch 0 5 0.0 4.958 3.3809 1.6916 4.3382 4.5377 3.3780
QCIG 0 5 0.0 4.969 4.5134 4.5364 5.0000 4.5925 4.6873
QCl7 0 5 0.0 4.827 5.0000 0.1054 5.0000 4.7640 5.0000
QCZQ 0 5 0.0 4.997 5.0000 4.8597 4.8830 4.8416 3.4804
QC21 0 5 0.0 4.671 4.9596 4.0605 5.0000 4.8596 23131
el 0 5 0.0 4.801 3.8958 4.7985 5.0000 4.5215 4.3055
23
Q(, 0 5 0.0 3.935 5.0000 4.9995 4.9779 4.6873 1.4567
724
c 0 5 0.0 5.000 3.0889 2.4542 4.5452 3.0259 5.0000
729
Fuel cost ($/h) 901.88 799.079 966.1272 803.1427 800.2926 799.2276 835.055
Active power loss 7.53 8.619 2.9084 9.7545 8.9224 8.3269 5.5915
Total Voltage deviation 1.1554 1.8 1.8566 0.1061 1.8242 1.8417 1.0869
. 0.1681 0.117 0.1173 0.1369 0.1146 0.1167 0.1240
Emission(ton/hr) 0.3639 0.2054 0.3602 0.3550 0.3525 0.2417

4.5 Results of Quad and Quanta-Objective Case Studies

Quad-objective case study contains four different objective functions namely, FC, APL, TVD, and
emission (case study 11 and 12). Comparative results of the present case study have been shown in
Table 8. Results of present study have lowest TVD and increased voltage stability of the system. The
present case study gives best solution when compared with individual case studies without violating
restricted limit of voltages. Results for the present case studies i.e. 11 and 12 have been shown in
Fig. 11 and 12. Quanta-objective case studies contain five different objectives i.e. FC, APL, TVD,
emission, and L-max. It has been seen that, this case study gives better results of FC and L-index.
Moreover, voltage limits of this case study are restricted within its permissible limits. Comparative
results of the present case study are given in Table 8. Outcome for the quanta-objective case study
has been shown in two parts as 13(a) and 13(b) in Fig. 13 and 14.

5. TUNING OF PARAMETERS FOR THE QOBSA

To get the optimized solution, it requires to acquire proper value of amplitude of feasible space search
direction for mutation and crossover it is optimal value of mizrate . Here, for the F', mizrate have
been varied to get all possible solution for this problem. Result of case study 1 for tuning of parameter
shown in Table 9.
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Table 4. Simulation results for OPF problem of cases 7-13 for IEEE 30-bus power system

Downloaded: 10/4/

F Address

Min Max Case:7 Case:8 Case:9 Case:10 Case:11 Case:12 Case:13
]31 50 200 176.5522 110.43 113.2057 172.5607 170.9573 112.0377 112.8047
Pz 20 80 48.7746 61.2151 59.2868 48.9721 48.3480 59.2073 58.7435
]:)5 15 50 21.3157 28.8477 27.9651 22.0924 21.2704 28.3815 28.3120
P8 10 35 21.5416 34.9443 34.8926 24.0757 24.2342 35.0000 34.9101
]311 10 30 12.5724 30.0000 27.7718 12.9106 15.8382 28.3798 27.8161
P13 12 40 12.5204 22.9066 26.2268 12.1204 12.1308 26.1613 26.8852
I/1 0.95 1.10 1.0585 1.1000 1.0289 1.0451 1.0596 1.0254 1.0492
V; 0.95 1.10 1.0409 1.0922 1.0214 1.0287 1.0398 1.0189 1.0410
I/5 0.95 1.10 1.0029 1.0686 1.0112 1.0107 1.0056 1.0007 1.0073
I/S 0.95 1.10 1.0288 1.0813 0.9998 1.0060 1.0290 1.0023 1.0320
I/11 0.95 1.10 1.0336 1.1000 1.0389 1.0025 1.0579 1.0192 1.0364
I/13 0.95 1.10 1.0097 1.1000 0.9980 1.0078 1.0125 1.0121 1.0030
T11 (6 - 9) 0.90 1.10 1.0646 1.0468 1.0148 1.0166 1.0662 1.0274 1.0480
T,
(6 _ 10) 0.90 1.10 0.9881 0.9022 0.9449 0.9054 1.0215 0.9154 1.0232
T,
<4 o 12) 0.90 1.10 1.0336 1.0058 0.9552 0.9756 1.0170 0.9838 1.0201
T
<28 _ 27) 0.90 1.10 0.9004 0.9913 0.9555 0.9665 0.9000 0.9612 0.9000
QC10 0 5 4.9948 3.0108 4.8201 3.9088 5.0000 5.0000 4.9597
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Table 4. Continued

Min Max Case:7 Case:8 Case:9 Case:10 Case:11 Case:12 Case:13
Cyy 0 5 5.0000 42441 0.2188 0.6984 49717 1.6021 4.9948
Cys 0 5 4.9858 5.0000 43296 5.0000 4.8825 42852 4.9481
QOU 0 5 4.9960 5.0000 0.6818 0.0875 5.0000 1.1491 4.9451
QG20 0 5 5.0000 4.5504 4.9401 5.0000 4.7092 4.9851 4.9906
) 0 5 5.0000 1.8473 4.5061 4.9526 5.0000 4.4393 5.0000
Q, 0 5 4.9808 3.6853 5.0000 4.9859 5.0000 5.0000 4.9956
23
Q, 0 5 4.9951 3.6209 4.8703 4.9245 4.9913 4.9448 5.0000
24
- 0 5 4.9575 4.8635 1.6252 22823 5.0000 2.5414 5.0000
729
Fuel cost ($/h) 803.8310 836.8511 838.7109 803.0669 803.7119 839.9799 840.2082
l’?’zgve power 9.9185 5.1567 5.8877 9.4208 9.5905 5.8659 6.1385
Total Voltage 0.4832 1.7081 0.1108 0.1102 0.4995 0.1026 0.4947
deviation
o 0.1199 0.1184 0.1368 0.1372 0.1199 0.1369 0.1197
Emission 0.3617 0.2383 0.2396 0.3509 0.3460 0.2380 0.2389
(ton/hr)

Table 5. Comparison of results of single objective case studies

Cases NISSO (Nguyen | MODA (Herbadji | SCA (Attiaa MSCA (Attiaa FAHSPSO-DE QOBSA
2019) 2017) 2018) 2018) (Naderi 2021)

Case:1 | 799.76242 802.32 799.7627 799.31 799.8066 799.079

Case:2 | 2.9454 - 2.9425 2.9334 4.9989 2.9084

5.1 Sensitivity Analysis

The best, median, maximum, and standard deviation has been shown for the proposed approach.
It can be seen from the below table that proposed approach is giving significant improvement in
performance over the existing.

5.2 Annual Saving

Annual saving is another important parameter to analyse the cost-effectiveness of the solutions
obtained from any OPF approach. In this work, the annual saving analysis has been done and it has
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Table 6. Comparison of results of bi-objective case studies

Downloaded

10/4/2
F Address

Methods
Cases | Objective MODA MOICA MOBSA MOMICA QOMJaya
(Herbadji (Ghasemii et al. (Daqaq (Ghasemi et al. (Warid et al. MOQOBSA
2017) 2014) 2017) 2014) 2018)
Case:s | Fuel 807.2807 805.0345 800.1085 804.96 - 803.1427
cost($/h)
V.D 0.023 0.1004 0.3657 0.095 - 0.1061
Case:4 | Fuel Cost - 799.8808 - 800.8923 800.2926
L-index - 0.1336 - 0.12485 0.1146
Case:5 | Fuel Cost 850.9001 - 848.0544 826.9651 799.2276
Active Power 4.5625 - 4.5603 5.7596 8.3269
Case:6 | Fuel cost 838.604 865.3134 - 865.066 - 835.055
Emission 0.254 0.2246 - 0.2221 - 0.2417
Figure 3. Convergence characteristics for case 3
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Table 7. comparison of results of tri-objective case studies
Cases Objective Method
MODA (Herbadji 2017) MOBSA (Dagaq 2018) MOQOBSA
Fuel cost - 804.3982 803.8310
Case:7
V.D - 0.3167 0.4832
L-index - 0.1274 0.1199
Case:8 Fuel cost 867.9070 - 836.8511
(Tter=300) APL 45342 - 5.1567
Emission 0.2640 - 0.2373
Fuel cost - - 838.7109
Case:9 V.D - - 0.1108
Emission - - 0.2396
Fuel cost - - 803.0669
Case: 10 V.D - - 0.1102
APL - - 9.4298
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Figure 7. Convergence characteristics for case 7
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Figure 10. Convergence characteristics for case 10
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Table 8. Comparison of results of Quad and Quinta objective case studies

Cases Objective Method

Case:11 MOQOBSA
Fuel cost 803.7119
APL 9.5905
VD 0.4995
Lmax 0.1369

Case:12 MODA (Herbadji 2017) MOMICA (Ghasemi 2014) | MOQOBSA
Fuel cost 828.49 830.188 839.9799
Active power | 5.912 5.585 5.8659
VD 0.585 0.298 0.1026
Emission 0.265 0.252 0.2380

Case:13 I-NSGA-III MOQOBSA
Fuel cost - 843.8571 840.2082
Active power | - 5.7405 6.1385
VD - 0.2388 0.4947
Emission - 0.1485 0.2389
L-max - 0.1253 0.1197

been noticed that proposed MOQOBSA can save huge revenue when compared to some of the recent
algorithms. Table 11 shows the comparative analysis. Table 12 show the reduction in emissions. For
both the cases the outcomes are promising.

6. CONCLUSION
The computation of Optimum Power Flow (OPF) in the power system can be helpful in real-time

control with help of various objectives, operations, and planning of new or existing thermal plants.
In this paper, a new optimization algorithm, which is a combination of quasi-oppositional based

19
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Figure 11. Convergence characteristics for case 11
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learning and backtrack search algorithm, has been suggested. Thirteen distinct case studies have
been considered to verify the efficacy of the proposed approach. The suggested algorithm has been
successfully implemented for IEEE-30 bus with multi-objective functions. The result of proposed
algorithm outperforms the other algorithm in the literature at allowable levels of economic,
environmental, and technical objectives. This suggested technique leads to lowest level of fuel cost
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Table 9. Effect of various parameters on the performance of QOBSA

F Miz _rate
1 0.9 0.7 0.5 0.3 0.1
3* randn 799.004 [ 799.100 | 799.128 | 799.183 | 799.134 | 799.208
4* randn 799.079 | 799.081 | 799.127 | 799.152 | 799.159 | 799.159
lognrnd (ﬂmd, 5% mnd) 799.094 | 799.119 799.104 | 799202 | 799.182 | 799.245
1/ normrnd (07 5) 799.147 799.173 799.158 799.109 799.104 799.118

and emission. Moreover, this algorithm is robust and proves effectiveness compared with some of the
other algorithms. Recently, due to the massive penetration of renewable energy resources, including
electric vehicles, power system engineers are facing new operational challenges. The proposed
approach can be used as a robust tool for solving the generation-demand problems in most economical
way including various operational constraints.
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Table 10. Best, median, maximum, and standard deviation values for objectives

Objective Best Median Max S.D
Fuel cost 799.0736 799.8928 806.7935 1.294855
MOQOBSA
APL 2.995624 3.322479 4503163 0.303047
FAHSPSO-DE (Naderi | Fuel cost 799.8066 800.7713 801.9021 1.2635
2021) APL 4.9989 5.4412 5.8838 0.4423

Table 11. Annual saving for case studies under consideration

Case Methods Saving ($/h) Annual saving ($)

MOQOBSA MSCA (Naderi 2021)

Case: 1
799.0736 799.31 0.2364 2070.864
MOQOBSA QOMlJaya (Daqgaq 2017)

Case: 5
799.2276 826.9651 27.7375 2,42,980.5
MOQOBSA I-NSGA-III (Zhangab 2019)

Case: 14
840.2082 843.8571 3.6489 31,964.364

Table 12. Annual saving in emission

Case Methods Saving (ton/h) Annual saving (ton)
MOQOBSA MODA (Herbadji 2017)
Case: 8
0.2373 0.2640 0.0267 233.892
MOQOBSA MOMICA (Ghasemi 2014)
Case: 12
0.2380 0.252 0.014 122.64
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