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Net surface radiation (Rn) at earth surface comprises of outgoing and incoming components of longwave
and shortwave radiation Cuxes at the surface. This inCuences energy and mass exchange over earth
surface at sub-daily, seasonal and annual time scales. This is a critical component for land surface models
which characterize climatic, ecological and biological processes. Measured net radiation datasets are
rarely available and can be subjected to errors and high uncertainties due to equipment malfunctions and
failure. In this study, a regional-scale model is developed and implemented to estimate the net surface
radiation Cuxes over Indian landmass under cloudless sky conditions using the data from an Indian
Geostationary (GEO) Meteorological satellite (INSAT 3D) and polar-orbiting (LEO) MODIS-Aqua for
daytime conditions. The estimates were evaluated over a 6-month period (Nov 2019–Apr 2020) during
winter and summer months, at three in situ measurement sites, located in cropland and grassland. The
results showed a correlation of 0.86 between satellite-based Rn estimates and in situ measurements with a
root mean square error (RMSE) of 40.4 W m�2 (4.6% of measured mean) and a mean absolute error
(MAE) of 5.6% of measured mean. The modelled estimates were compared with NCEP (National Center
for Environmental Protection) reanalysis global surface radiation estimates diurnally. The NCEP model
tends to under- or over-estimate during the study time period especially in the month of January.

Keywords. Net surface radiation; cloudless sky; INSAT; MODIS.

1. Introduction

Essential climate variables (ECV) are a group of
linked variables (physical, chemical, biological),
which collectively provide statistical and empirical
evidence for understanding, predicting and mod-
elling the earth’s climate (Bojinski et al. 2014). The
surface radiation (energy) budget, expressed in

terms of net radiation, is an ECV within the earth-
atmosphere system. It is a fundamental quantity
and component of the surface that modulates earth
surface processes within the climate system. Net
surface radiation (Rn) surface comprises of incom-
ing shortwave and outgoing longwave components
of radiation Cuxes at the surface. This inCuences
energy and mass exchange over earth surface at
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sub-daily, seasonal and annual time scales. This is
a critical component for land surface models which
characterize climatic, ecological and biological
processes. Solar radiation Cux is received at earth
surface in shortwave region (0.3–3 lm) of electro-
magnetic wavelength after it passes through the
Top Of the Atmosphere (TOA) and reaches the
surface after interaction with various atmospheric
constituents. The shortwave travels back into
space through reCection or scattering by clouds,
aerosols or the earth’s surface and remaining
amount is received at earth’s surface. Thermal
radiation in the longwave region (3–100 lm) is
emitted by the surface and the atmosphere. Net
radiation can be segregated into two distinctive
zones: (i) net radiation Cux at TOA and (ii) net
surface radiation Cux (hereafter denoted as Rn).
The earth radiation budget (ERB at TOA)
describes the overall balance between the incoming
shortwave energy Cux from the Sun, reCected
shortwave Cux from Earth, the incoming longwave
Cux from air and sky, and outgoing longwave
radiation from the surface. Any perturbation in the
radiation budget at TOA causes positive or nega-
tive radiative forcing of the climate system
(Dewitte and Clerbaux 2017). Net surface radia-
tion (Rn) is one of the major areas of focus of the
earth-atmosphere system as it is responsible for all
types of energy and mass exchange processes
between earth surface and within the atmospheric
boundary layer. The daytime Rn is essential to
model various terrestrial eco-physiological pro-
cesses such as evapotranspiration and photosyn-
thesis over agro-ecosystems and natural
ecosystems (Wei et al. 2018). The Rn is the sum of
net surface shortwave (Rns) and net surface long-
wave (Rnl) radiation Cuxes (Garc�ıa et al. 2007).
One of the key uncertainties in site-speciBc

evaluation of land surface energy balance,
hydrological or ecological models stems from the
lack of availability of systematic and continuous
records of net radiation Cux measurements, even
at measuring stations where other key meteoro-
logical variables are measured (Abramowitz et al.
2012). Since 1950s, there have been numerous
empirical models developed by scientists to esti-
mate the net radiation Cux components (Car-
mona et al. 2014). The studies focus on
derivation of either net radiation or its individual
components. These are location- and condition-
speciBc and can lack practical applicability and
scalability (Zhang et al. 2017). The simulations of
global scaled General Circulation Models (GCM)

of 38 different models used in CIMP5 (Coupled
Model Intercomparison Project 5) as well as
satellite-based models to estimate radiation
Cuxes, were compared by Wild et al. (2019). The
authors identiBed that radiation Cuxes vary sig-
nificantly during cloudless and cloudy sky con-
ditions (Wild et al. 2019). Regional estimation
models tend to be more precise at levels of agro-
climatic zones and sub-zone. However, little
attention had been given to regional estimations
(Jones et al. 2017). Daily net surface radiation
estimates are derived through LEO (Low Earth
Orbiting) satellites such as MODIS (Moderate
Resolution Imaging Spectroradiometer) (Verma
et al. 2016). Regional estimation of daily Rn from
LEO satellites generally uses a maximum of four
observations from TERRA and AQUA during
day and night time. These use of land surface
parameters such as albedo, land surface temper-
ature, land cover-based surface emissivity at Bner
resolution (500–1000 m) along with external
inputs of coarser resolution (*50 km) modelled
or reanalysis Belds on incoming shortwave radi-
ation Cux and air temperature. On the other
hand, geostationary (GEO) meteorological satel-
lite provides observations at 15–30 min intervals
throughout the day. This enables to compute
instantaneous, diurnal and daily integral (Bhat-
tacharya et al. 2009) of surface insolation (INS)
as well as land surface temperature (Ts) (Pandya
et al. 2011) at less than 5 km resolution.
Therefore, the combination of Bner resolution less
time-dynamic land surface variables such as land
albedo and emissivity from LEO platform along
with highly dynamic variables such as surface
insolation and Ts at diurnal time scale from GEO
platform can provide practical insight into
regional-scale variability of Rn estimates. Net
radiation approaches are higher km grid scale
even for global estimates. Fusion approaches
require higher temporal resolutions and more
varied number of parameters. Renzullo et al.
(2008) provided a ‘multiple constraints’ model-
data fusion (MCMDF) scheme which was inte-
grating AMSR-E (Advanced Microwave Scanning
Radiometer for EOS – Earth Observation Satel-
lite) soil moisture content (SMC) along with
MODIS land surface temperature (Ts) datasets
that were coupled for a biophysical model of
surface moisture and energy budgets for savan-
nahs of over the northern Australian region
(Renzullo et al. 2008). The results were compared
with MODIS ET (evapotranspiration) and
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thermal products as a validation which provided
a strong agreement.
However, GEO-LEO data fusion approaches are

sparsely used for net radiation estimates especially
on a country scale (Cammalleri et al. 2013). Very
few site-speciBc studies have provided evidence in
the estimation of Rn at an hourly or half-hourly
interval on a regional scale (Long et al. 2010). With
better spatial-temporal availability, satellite-based
products will help in understanding the inter- and
intra-seasonal variability and atmospheric circula-
tion pattern. In this study, our aim is to develop a
uniBed model, that is capable of estimating Rn and
its radiative Cuxes under all-sky conditions. For
example, one of the Rn components (incoming
longwave radiation Cux) has been derived using
machine learning approaches under cloudy-sky
conditions (Gharekhan et al. 2021). The current
study presents (i) a model framework which esti-
mates regional-scale diurnal Rn over the Indian
landmass under cloudless conditions during day-
time using GEO-LEO satellite data and (ii) vali-
dation of satellite-based Rn estimates over different
agro-climatic settings with respect to in situ mea-
surements and reanalysis Belds.

2. Study region and data used

The study region comprises of Indian subcontinent
spanned over 68.15�–97.2�E and 8.06�–37.1�N. It
comprises of 15 broad agro-climatic zones identi-
Bed by the Planning Commission in 1988 based on
climatic conditions and suitability of crops which
include solar radiation, rainfall, elevation, soil and
others (Chattopadhyay et al. 2019). Different
products from operational Indian geostationary
(GEO) meteorological satellite (INSAT 3D) and
polar orbiting (LEO) satellite (MODIS Aqua) were
used for regional-scale estimation of Rn. The in-situ
measurements of diurnal Rn at selected Cux tower

sites in agro-ecosystem and grassland ecosystem
were used for the evaluation of satellite-based
estimates. The regional-scale inputs for Rn esti-
mation are given in table 1.
Surface insolation [3DIMG˙L2C˙INS] is a sec-

ond-level data product which provides the incom-
ing solar radiation reaching at surface, estimated
from the Indian GEO satellite, INSAT-3D, at
every half-an-hour at 5 km spatial resolution
(ISRO 2019) using a spectrally integrated cloud-
less-sky model and three-layer cloudy-sky model
(Bhattacharya et al. 2009) using visible (0.52–0.72
lm), thermal IR (Infrared) (10.2–12.5 lm) and water
vapour bands (6.5–7.0 lm) of INSAT 3D ‘Imager’.
The land surface temperature (Ts)

[3DIMG˙LST˙L2B] is retrieved through split-
window algorithm tuned for INSAT 3D ‘Imager’
split-thermal infrared (TIR) bands (10.2–11.2 lm
for TIR1 and 11.5–12.5 lm for TIR2) at every half-
an-hour interval at 4 km spatial resolution (Pan-
dya et al. 2011). Both diurnal daytime SWin and Ts

are generated through an automated processing
chain and available through MOSDAC (www.
mosdac.gov.in) portal for the user community.
The albedo (a) [MCD43C3] is a level-3 MODIS

terra-aqua combined daily averaged global product
produced at 0.05� grid resolution. MCD43C3 Ver-
sion 6 Bidirectional reCectance distribution func-
tion and Albedo (BRDF/Albedo) dataset is
produced daily using 16 days of Terra and Aqua
MODIS data at a 0.05� resolution (5.6 km at the
equator) aggregated climate modelling grid (CMG)
(NASA and Schaaf 2019).
Surface emissivity [es] was acquired using month

averaged surface emissivity product [MOD11C3].
In the day–night algorithm, surface emissivity is
retrieved from pairs of day and night MODIS
observations in seven TIR bands (NASA and
Frazier 2019), which was later combined with same
month 10-year historical datasets, thus having

Table 1. Satellite-based and gridded weather forecast products used for estimation of net surface radiation over Indian Landmass
in cloudless skies.

Regional-scale inputs Unit Spatial resolution Source Data code Temporal resolution

Surface insolation (SWin) W m�2 5 km INSAT 3D 3DIMG˙L2C˙INS 30 min

Albedo (a) 0.05� grid (5.5 km) MODIS Aqua MCD43C3 Daily

Air temperature (Ta) K 5 km WRF model Ta˙2 3 hours

Surface emissivity (es) 0.05� grid (5.5 km) MODIS MOD11C3 10-year monthly mean

Land surface temperature (Ts) K 5 km INSAT 3D 3DIMG˙LST˙L2B 30 min
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more reliable information over the region at global
scale 0.05� resolution. Inaccuracy in the estimation
of surface emissivity can cause errors in the net
longwave Cux estimates at the surface (Hartmann
2016). To overcome this, MODIS provides monthly
averaged emissivity measurement over the globe
with 0.05� grid resolution and a 10-year mean
(2010–2018) was generated for each month.
Regional subsets of MODIS albedo and surface
emissivity products were used for Rn estimation.
A reanalysis gridded climate dataset on net

shortwave and net longwave Cuxes in cloudless
skies is provided by NOAA/OAR/ESRL PSL
(https://psl.noaa.gov/), Boulder, Colorado, USA,
on a global level of surface Cuxes. The NCEP
provides net shortwave and net longwave radiation
Cux estimates four times per day as well as daily
average globally at a spatial resolution of 28
Gaussian grid (roughly 220 km spatial resolution)
(Kalnay et al. 1996). The 4-time daily estimates
were averaged to derive a daytime daily net radi-
ation estimate. The daily daytime Cuxes were
averaged for 15 days for comparison.
The reanalysis product ERA5 (ERA5: Fifth

generation of ECMWF atmospheric reanalyses of
the global climate) provided by the Copernicus
Climate Change Service (C3S) was taken into
comparison. This is a replacement on the ERA-
Interim which has been discontinued since October
2019. The ERA5 provides monthly as well as
hourly estimates of different atmospheric and
meteorological parameters. It provides separate
net shortwave and longwave Cuxes at an hourly
interval throughout the day which can be added to
derive Rn during the daytime. ERA5 provides a
higher spatial resolution of 31 km as opposed to its
predecessor ERA-Interim (8 km) (Hersbach et al.
2020). The dataset can be accessed at https://cds.
climate.copernicus.eu/cdsapp#!/home (CDS 2017).
Weather Research and Forecast Model (WRF) is

a numerical model adapted for the generation of
important weather variables for short-range fore-
casting. The model serves for a large range of
meteorological applications across the Indian
landmass. WRF derives simulations based on
actual atmospheric conditions (i.e., from observa-
tions and analyses) or can be simulated for ideal-
ized conditions. It oAers operational forecasting a
Cexible computationally-efBcient platform, while
highlighting the recent advances in physics,
numeric and data assimilation contributed by
developers from the expansive research commu-
nity (Kumar et al. 2012). It is a limited area,

non-hydrostatic, primitive equation model which is
operational for multiple and diverse physical
parameterization schemes. The current model
employs Arakawa C-grid staggering for the hori-
zontal grid and a fully compressible system of
equations. The terrain following hydrostatic pres-
sure coordinated with vertical grid stretching was
followed in vertical. The time-split integration uses
3rd order Runge–Kutta scheme with a smaller time
step for acoustic and gravity wave modes (Kumar
et al. 2011). The regular WRF model output for
different surface and meteorological parameters is
generated by AOSG (Atmospheric and Oceanic
Science Group), SAC (Space Application Centre),
ISRO (Indian Space Research Organisation) after
assimilation of satellite radiances (Kumar et al.
2012). The WRF model has been customized to
provide short-range forecasts at 5 km spatial
resolution at 3-hr intervals over Indian subcon-
tinent where data assimilation from Indian and
global satellite observations to the model has
been made operational at SAC (Space Applica-
tions Centre), ISRO (Indian Space Research
Organisation). The model has been assessed and
validated with global products available in differ-
ent studies that provided a strong correlation
for radiative and soil Cuxes over different reso-
lutions diurnally and with respect to in situ
measurements from micrometeorological towers
(Kumar et al. 2016).
In situ measurements on diurnal Rn were recor-

ded using net radiometer at 30 min intervals. These
in situ datasets were recorded during the
INCOMPASS (INteraction of Convective Organi-
zation and Monsoon Precipitation, Atmospheric
Surface and Sea) campaign under Indo-UK col-
laborative project to study monsoon dynamics
under different agro-climatic regions with ground-
based high-response sensors and aerial Cight mea-
surements (Turner et al. 2019). Under this project,
net radiometers (Kipps and Zonen CNR4) were
installed along with meteorological assembly. The
radiation sensor is a 4-component net radiometer
that measures incoming and outgoing shortwave
and longwave radiation Cuxes. This is a four-com-
ponent net radiometer that measures incoming
(SWin) and outgoing (SWout) shortwave, incoming
(LWin) and outgoing (LWout) longwave radiation
Cuxes with uncertainty in daily mean of less than
10% (at 95% conBdence level) for each component
(Rubel and Kottek 2011). The sensors have a high
response time of less than 18 sec, with a sensitivity
of measurement within 5–20 lV W�1 m�2 (Zonen
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2019). The concurrent measurements on relative
humidity and air temperature were recorded using
other pre-installed sensors. Presently, under
INCOMPASS, the measurement systems installed
at three different homogeneous agro-ecosystem
sites are at (1) Jaisalmer, Rajasthan, (2) Nawa-
gam, Gujarat, and (3) Samastipur, Bihar which
were used as a reference for evaluation of satellite-
based Rn estimates. Their climatic characteristics
are explained in table 2.

3. Methodology

3.1 Cloudless sky daytime net surface radiation
model

Net surface radiation (Rn) Cux is the sum of net
shortwave (Rns) and net longwave radiation (Rnl)

Rn ¼ Rns þ Rnl; ð1Þ

Rns ¼ SWin � SWout; ð2Þ

Rns ¼ SWin 1� að Þ; ð3Þ

where SWin: incoming shortwave radiation:
Insolation (SWin) [W m�2], SWout: outgoing
shortwave radiation [W m�2], a = Albedo [unit
less]. The Rnl is the difference between incoming
(LWin) and outgoing (LWout) longwave radiation
Cuxes. The LWin can be expressed as:

LWin ¼ earT
4
a ; ð4Þ

where Ta is the air temperature (K), ea is eAective
clear-sky atmospheric emissivity, r = 5.6 910�8

(W m�2 K4) is Stephen Boltzmann’s Constant.
The ea over a region cannot be directly measured.
Bastiaanssen (1995) proposed an empirical

relationship between incoming solar irradiance at
earth surface through SWin and the solar irradiance
received at the top of the atmosphere aka extra-
terrestrial solar radiation (Rext) Cux (Bastiaanssen
1995):

ea ¼ 0:85� lnT0:09
sw ; ð5Þ

where

Tsw ¼ 1� SWin

Rext
; ð6Þ

Rext ¼ Gsc � cos
p
180

SZA
� �

� e; ð7Þ

where Gsc is the solar constant, i.e., 1367 W m�2,
SZA is Solar Zenith Angle, SWin is incoming
shortwave radiation (W m�2), e is the
eccentricity of surface interaction that includes
scattering, emission and absorption of energy based
on sun–earth distance-correction factor, Tsw is
deBned as atmospheric transmissivity, a ratio of
all-sky mean downwelling SW Cux to the mean of
SW Cux in cloud-free sky widely used in both
observational modelling and GSMs (Qian et al.
2012). The energy emitted by the surface in the
infrared region (4–100 lm) can be deBned as
outgoing longwave radiation (LWout). This can be
estimated from surface emissivity (es) and land
surface temperature (Ts).

LWout ¼ esrT
4
s : ð8Þ

Therefore, Rn can be expressed as:

Rn ¼ INSð1þ aÞ þ 0:85� ln
SWin

Rext

� �0:09
sw

 !
rT4

a

" #

þ esrT
4
s : ð9Þ

Table 2. Agro-climatic characteristics of evaluation sites.

Site

Lat.

(�N)

Long.

(�E)
Agro-climatic

sub-zone

Climate and

vegetation

Mean annual

Ta (�C)
Annual P (mm)

(CV (%))

Jaisalmer

(Rajasthan)

26.99� 71.34� Arid western zone Arid grassland Tmax: 25–40

Tmin: 8–25

100–300 (56)

Nawagam

(Gujarat)

22.8� 72.57� Middle Gujarat zone Semi-arid cropland Tmax: 29–39

Tmin: 9–25

700–850 (36)

Samastipur

(Bihar)

26� 85.67� Northwest alluvial

plain zone

Humid-subtropical

cropland

Tmax: 23–29

Tmin: 10–20

900–1200 (17)

Ta: air temperature; Tmax: daily maximum temperature during the period observed by Ghosh (1991); Tmin: daily minimum
temperature during the observation period of 1990; P: rainfall (mm) measured using rain gauge at EC site during the observation
period of 1990 (Ghosh 1991). The period during winter and summer months (1 Nov 2019–Apr 2020) was chosen for validation of
satellite-based estimates of Rn for cloudless skies. Their bias correction is later depicted in table 3.
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3.2 Data fusion approach for regional-scale
implementation of model

Data fusion approaches process information with the
adaptation of technology that can and is being used to
analyse, synthesize, simulate and predict several
observation measurements acquired from multiple
satellites in time sequence under speciBc criteria. This
facilitates to complete the required decision-making,
evaluation tasks and provides estimates of other
parameters (Zhanget al.2013).This approach tends to
rescale multisource to a required spatial resolution.
These approaches provide high applicability in the
analysis of ocean and meteorological observation
datasets, especially for parameters that cannot be
directly measured on large-scale regions (Wei et al.
2019). The present study adapts a data fusion
approach for operational implementation of regional-
scale Rn model. The model framework is presented
below through this Cow chart in Bgure 1.
The strength of the proposed methodology is that

it considers the advantages of satellite remote sens-
ing-based products from both GEO and LEO plat-
forms and short-range gridded air temperature
forecast from operational NWP (NumericalWeather
Prediction) model which can be used to derive Rn at
high temporal interval without dependence on in situ
measurements. The regional-scale Rn was computed
at an interval of 30 min during daytime hours.

4. Results and validation

4.1 Sensitivity of cloudless-sky Rn to land
surface and meteorological inputs

Quantifying the sensitivity of Rn estimates to
variability or uncertainty associated with input

variables is essential. Identifying the inCuence of
each parameter for the output is necessary. One-
dimensional (1D) is a linear approach to observe
these inCuences. 1D sensitivity analysis was carried
out using change in different input levels from their
mean to evaluate the impact on Rn estimates (de-
picted in Bgure 2).
In 1D sensitivity analysis, one input variable

was changed within its theoretical or practical
range while keeping other inputs constant. The
input variables were normally changed from its
Bxed or central value up to ±50% (Nigam et al.
2014) as per the characteristic of input variable.
However, due to the nature and range of the
input variables, individual scales were adapted.
The detailed values can be found in Appendix,
table A1. The sensitivity analysis showed that
change in input variable albedo (a) from its mean

Figure 1. Methodology Cow to derive Rn over Indian landmass under cloudless sky conditions.

Figure 2. One-dimensional sensitivity analysis of Rn to land
surface and meteorological inputs.
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value 0.25 to ±1.5% lead to ±10% change in
instantaneous Rn. The change in land surface
emissivity (es) of the order of ±0.03% led to 2%
deviation in Rn. On the other hand, meteorolog-
ical and land surface variables such as tempera-
ture (Ta and Ts) or surface insolation (SWin) also
inCuence Rn which showed less percent change in
Rn as compared to es and a. Deviation of ±38 in
Ta and Ts led to approximately 5% change in Rn.
Further, a change in surface insolation of the
order of 2–4% alters the overall Rn with a change
of 1–2%.

4.2 Evaluation of satellite-based daytime Rn

estimates

The diurnal satellite-based daytime Rn estimates
between 8 and 17 hrs were compared with in situ
measured Rn in semi-arid sites at cropland in
Nawagam, Gujarat and desert grassland in
Chandan, Jaisalmer at half-an-hour interval for
selected dates and cloudless-sky occurrences at
15 days’ interval during Nov 2019–Apr 2020
(Bgure 3). This showed a close match between
satellite-based Rn estimates and measurements on
selected dates with RMSE varying from 2.4 (9.5
W m�2) to 21.9% (35.9 W m�2) and MAE from
2.8 (11.1 W m�2) to 14.1% (51.3 W m�2) of
measured mean with correlation coefBcient in the
range of 0.83–0.99. The deviations of Rn estimate
from measurements were found to be more at
early and late morning hours in the order of 7.7%.
While satellite-based Rn Cux estimates were found
to be smooth, the measured Rn Cuxes are less
smooth in nature in some cases. Satellite obser-
vations are instantaneous while the in-situ mea-
surements have been averaged to 30 min.
Moreover, there is a possibility of presence of thin
clouds just over tower footprint of less than 1 km2

at any or multiple instances within 30 min but not
entirely occupying the 16 km2 corresponding to
pixel footprint at the time of instantaneous
observations from INSAT 3D ‘Imager’. In addi-
tion to that, wind turbulence impact on thermal
infrared emittance plays a dominant role when
measurement footprint is of few meters and the
eAect fades out with coarser measurement foot-
print. However, sudden change in wind turbulence
may show up eAect on thermal emittance and
thereby Rn measurements even at coarser scale
around 1 km2. But the turbulence eAects are
minimal at the footprint of INSAT 3D ‘Imager’.
These are the reasons for getting less smooth

diurnal curve of 30 min average measured Cuxes
but not in the case of satellite estimated instan-
taneous Cuxes.
The diurnal plots between modelled and in situ

measurements at fortnightly interval over Jai-
salmer, Nawagam and Samastipur are shown in
Bgure 3 with their statistical performance in
Appendix, table A2.
The correlation consistently showed a strong

agreement of the modelled estimates with in-situ
measurements. Jaisalmer showed only 5.7% error
in January, while it increased to 7.4% in the month
of March while in April, errors could not be
assessed due to lack of datasets. Similarly, Nawa-
gam had a lower error in January (6.5%) as against
March (8.2%) while it dropped further in April
(4.2%). The lack of measurements in November
and December signiBes the presence of clouds/fog
which restrict the observations of the surface
(Kesarwani et al. 2018). From January to April,
error increased due to the rise in aerosol in atmo-
sphere (Yoon et al. 2014). The climatology of 8-day
MODIS AOD at 1� grid resolution was used for
operation generation of surface insolation product
in cloudless skies for cloudless-Cagged pixels of
INSAT 3D imager data. Deviation of AOD from
climatic mean tends to increase during March to
May period especially in Jaisalmer and Nawagam
regions due to sporadic dust events (Masoom et al.
2020). Moreover, the coarse resolution (1�) product
is not able to quantify sub-grid variability of AOD
due to increased aerosol loading (Roelofs 2012).
These might lead to increasing deviations in inso-
lation product and measurements. The higher
uncertainty of AOD especially over brighter
regions (snow, ice, desert and barren lands) can be
a factor for higher errors of surface insolation under
aerosol loaded skies (Mishra et al. 2014). While the
correlation was high, the model still tends to
overestimate over desert grassland in Jaisalmer
and underestimate in agriculture landscape at
Nawagam especially during sunrise and sunset
hours. The errors might have originated due to
differences in temporal resolution of various satel-
lite and WRF-based inputs. While SWin, Rext vary
at each 30-min interval, there are a few inputs that
are not estimated at such a high temporal resolu-
tion which might also propagate errors in the Rn

model estimates. The variable such as surface
emissivity is assumed as static input change with
each computation over a long temporal duration
(more than a month). The albedo serves as semi-
static input because it does not change with every
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computation but change after a speciBc time period
within few days to a month. SWin and Ts are the
most dynamic inputs which change with 30 min

intervals. The WRF model forecasts Ta over the
Indian landmass with a spatial resolution of 5 km
at a temporal resolution of 3 hrs. All these lead to a

Jaisalmer
04 Nov, 2019 04 Dec, 2019 01 Jan, 2020

01 Feb, 2020 01 Mar, 2020 04 Apr, 2020

Nawagam
04 Nov, 2019 19 Dec, 2019 11 Jan, 2020

15 Feb, 2020 14 Mar, 2020 19 Apr, 2020

Figure 3. Diurnal daytime pattern of modelled and measured Rn at Jaisalmer, Nawagam and Samastipur on selected cloudless
dates during January–March, 2020. The x-axis represents the time (in hrs) and the y-axis depicts the Rn (in W m�2).
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confounding eAect that leads to error in the satel-
lite estimates of Rn.

The T-test was performed for validation of the
model with respect to in situ measurements
(Bgure 4). The probability distribution function
(PDF) curve showed a symmetric Bt to the dataset
with little positive skewness. The statistical sig-
nificance and the degree of correlation of the esti-
mates (no. of points (n) = 1524) with respect to
measurements was tested at 95% conBdence
interval (a = 0.05) that produced acceptance rate
lower than p B 0.001 (actual p = 1.48E-7) with
mean (l) of 343.3 W m�2 and standard deviation
(r) of 161.2 W m�2, indicating highly significant
result as determined through paired T-test with a
Pearson correlation coefBcient (r = 0.88).
Output of modelled estimates and in situ mea-

surements under speciBc conditions do not always
produce high performances and can have varia-
tions. These variations, i.e., bias errors between
ground observations and modelled estimates can be
due to imperfect conceptualization, discretization
and spatial averaging within grid cells (Soriano
et al. 2019). Bias corrections are the process of
scaling modelled outputs in a way that can account
for these systematics errors, thus improve their
Btting to observations. There are several bias

correction models and linear or quadratic scaling is
the most common approach used within empirical
estimates as the errors are very sparse and can be
speciBc under difBcult situations (Moghim and
Bras 2017).

Rnb ¼ 4:31 � 10�4 R2
n

� �
þ 0:51 Rnð Þ þ 90:5 ð10Þ

where Rnb is bias corrected Rn [W m�2]. The vali-
dation plot (Bgure 5) of satellite-based Rn esti-
mates on half-an-hourly basis and measurements
for all the cloudless-sky occurrences showed high
correlation coefBcient (R2 = 0.73) and RMSE (90.1
W m�2) of the order of 8.6% of measured mean
(highlighted in table 3) for 1524 paired datasets.
Since, there are differences between footprint of
satellite-based Rn estimates (0.05�) and point
measurements (few meters only) as well as differ-
ences in temporal frequency (half-an-hourly, three
hourly, once daily) among spatial inputs for Rn

estimates, a linear bias correction method was used
to minimize the bias of Rn estimates. This has
reduced the RMSE of satellite-based Rn estimates
to 5.6% (40.4 W m�2) of measured mean and
increased the correlation coefBcient (R2 = 0.87).
Recently, Verma et al. (2016) estimated Rn on a
global scale at 5 km spatial resolution from LEO
platform only using MODIS Terra and Aqua

Samastipur
04 Nov, 2019 04 Dec, 2019 04 Jan, 2020

04 Feb, 2020 04 Mar, 2020 04 Apr, 2020

Figure 3. (Continued.)
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products and compared with in situ measurements
from 154 sites from the FLUXNET and surface
radiation budget network (SURFRAD) with cor-
relation coefBcient of 0.74 for boreal to 0.63 for

Mediterranean sites and at some speciBc regions as
high as 0.9 (Verma et al. 2016). On a regional level,
Wu et al. (2017) estimated Rn for the Heihe river
basin in China and derived Rn for 12 months in the
year 2008 and at four stations with different
underlying surface type and acquired an R2 of 0.86.
This approach was identiBcation of cloud parame-
ters using GEO satellite FY-2D, while MODIS 1D
product provided a clear sky reCectance. The
approach considered the ground-based estimates as
a training input in regional scales within the Heihe
river and using sunshine hours for net shortwave
and FAO-56 method for deriving net longwave
radiation (Wu et al. 2017). Other studies have also
reported higher accuracies in regional hybrid
models (Yang and Shang 2013).
The method which incorporates land-based

measurements are limited for the speciBc site and
the approach is needed to be tuned for different
region estimates. Such hybrid ground-based models
are region-speciBc and cannot provide large-scale
estimates with high accuracies.
The reanalysis data over Jaisalmer, Nawagam

and Samastipur (depicted in Bgure 6) were found to
be close to the modelled Rn estimates from GEO-
LEO satellites and both are slightly underper-
forming during the month of January. As com-
pared to globally reported studies, the current
model performance with spatial inputs is at par
and even better than the global estimates as shown
with the comparison with the NCEP reanalysis
data. ERA5 provided near matching measurements
in comparison with the NCEP and satellite

Figure 4. Scatter density plot (left) and probability distribution curve (right) between Rn Cux from in situ measurements vs.
estimates from satellite-based observations of cloudless-sky during 8 am to 5 pm for the period, 1 November to 19 April 2020 at
three sites (Jaisalmer, Nawagam, Samastipur).

Figure 5. Validation plot of bias-corrected satellite-based Rn

estimates and in situ measurements during 1 November 2019
to 19 April 2020.

Table 3. Statistical performance of bias-uncorrected and cor-
rected model estimates.

Model

RMSE

(W m�2)

PRMSE

(%) R2 MAE (%)

Rn 90.1 20.2 0.73 8.6

Rnb 40.4 4.6 0.87 5.6

Note: Rn is model estimated net radiation [W m�2] and Rnb is
bias corrected [W m�2].

   73 Page 10 of 18 J. Earth Syst. Sci.          (2022) 131:73 



modelled Rn. Higher variation was observed during
the month of March for both sites. The variations
in Rn estimates across March and April are due to

the high presence of suspended aerosols that are
prominent during the peak summer months over
India, which ERA5 and other data sources are
identifying. The overall 15-day averaged pattern in
Samastipur showed a steady increase in the Rn

estimates and measurements, a testament to the
onset of summer months. The NCEP and ERA5
estimates were found to closely match with the in-
situ measurements and satellite-based estimates in
March and April. In the arid and semi-arid regions
over Nawagam and Jaisalmer, respectively, ERA5
tends to underperform. This can be due to its
coarser native resolution which might smoothen
out the sub-grid variabilities. The Rn estimates
obtained using data fusion approach with GEO-
LEO satellite data showed overall good agreement
with the in situ, NCEP and ERA5 measurements,
despite having different native spatial resolutions
or footprints.
Satellite-based estimates were scaled to the

NCEP resolution and compared for the 19th
February, 2020. The percentage difference on spa-
tial scale between the two estimates was found to
be very less of the order of 0.1–0.5% as shown in
Bgure 7 with relatively higher difference in south-
ern India. This shows close match of modelled Rn

estimates from GEO-LEO satellites and reanalysis
data over Indian landmass.

4.3 Regional distribution of Rn estimates in
pre-monsoon months

The regional distribution of satellite-based Rn

estimates over Indian landmass at 1530 IST on
selected dates during November 2019–March 2020
are exempliBed in Bgure 8. The blank regions
symbolize overcast conditions from dust storm,
clouds, etc. The shift in colour pattern depicts the
change with months.
The oceanic winds Cowing into India from the

southwest through Indian Ocean lead to the for-
mations and variabilities in the seasonal changes.
The fortnightly images also highlight the path in
which the net radiation estimates are gradually
rising from the southwest direction (Backeberg
et al. 2012). The East India Current deBnes the
northward-Cowing wind movement entering
through the Bay of Bengal leading to the onset of
monsoon and more cloud generation from Febru-
ary. McCreary et al. (1996) and few others reported
that this is due to the wind stress induced on the
east India coast region, which leads to a larger

Figure 6. Daytime 15-day average net radiation comparison
among satellite-based estimates, reanalysis and in situ mea-
surements over Jaisalmer, Nawagam and Samastipur.
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onset of clouds from the month of February till
October (McCreary et al. 1996). This is why the
modelled images have more amount of missing
measurements due to overcast clouds Cowing
towards India from the eastern coast near the
Bay of Bengal. While during the months of
November–December, the estimates could not be
derived due to cloud perturbations, the north-
eastern region showed Rn estimates in the range
of 300–350 W m�2 at the beginning of January.
This increased to 450 W m�2 within the span of 3
months due to the onset of summer and con-
comitant increase in surface insolation and
reduction in net longwave radiation due to an
increase in Ts.
The Rn histograms (Bgure 9) showed tetra-modal

pattern during 1st fortnight of January and gradu-
ally shifts towards tri-modal pattern towards 1st
fortnight of February. These showed largely bi-
modal pattern during second fortnight of February
to second fortnight of March. Due to the limited
satellite observations during the months of Novem-
ber, December and April, the histograms patterns
are sparsely spread and donors highlight a Gaussian
distribution. Despite all, the satellite-based esti-
mates under cloudless skies provide a good agree-
ment with in situ measurements. With different
approaches for overcast conditions like LWin esti-
mation under cloudy skies combined with the clear-
sky model, Rn estimation would be possible under
all-sky conditions.

Higher number of modes could be due to differ-
ences in land surface phenological contrast andwater
management in different crop types over northern,
southern, western and eastern India. These could
lead to variability in both net shortwave and net
longwave radiation Cux. During peak growth stages
which generally occur during late February to late
March in India, Rn was mostly inCuenced by con-
trasting net shortwave radiation regime between
northern and southern India that led to largely
bimodal distribution. The monthly NDVI (normal-
ized difference vegetation index) acquired from
MODIS suggests decrement of vegetation vigour
over India during the month of March, which shifts
further during April (shown in Bgure 10). The his-
togram provides the spread of observations post-
applying an agriculture mask and removing other
pixels. The regional mean and median of satellite-
based Rn estimates for Nov to Apr were found to
vary within a large range of 154–442 and 196–464
W m�2, respectively increasing from November
towards April (Appendix, table A3) while standard
deviation was found to vary within 66–115 W m�2.
This could be related to the change in extra-terres-
trial radiation and eventually the change in insola-
tion received on the surface over India with time
from January to March where extensive decrease in
atmospheric water vapour especially in the west and
north-western parts of India occurred due to the
onset of summer season. The Cow of winds and the
western disturbances originating over the Indian

Figure 7. Histogram and spatial pattern of percent difference between 15-day daytime average net surface radiation estimates
between ERA5 reanalysis Cuxes and satellite-based estimates on the 19th of February, 2020.
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04 Nov 19 Nov 04 Dec

19 Dec 04 Jan 19 Jan

04 Feb 19 Feb 04 Mar

19 Mar 04 Apr 19 Apr

Figure 8. Regional-scale cloudless-sky Rn estimates at 1530 IST in each fortnight between Nov 2019 and Apr 2020 over Indian
landmass.
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Ocean remain more active in January and February
as compared to March or April (Dimri and Chevutri
2016). A skewness can be observed in the 4th and
19th January histograms, with two separate peaks.
This might be due to the transition from winter to
spring months and lower surface temperature. On
4th March, Rn showed least overcast conditions and
also recorded the peak that was not observed in the

other histograms with maximum Rn around 500
W m�2. The summary statistics showed a rise in the
minimum and maximum satellite-based Rn due to
the onset of spring over Indian landmass. Also, on
the 19th of February, a sudden rise in the maximum
Rn estimated from satellite was seen, but the pattern
was skewed due to the availability of low number of
cloudless pixels (only 61%) as against 4 February

04 Nov 19 Nov 04 Dec

19 Dec 04 Jan 19 Jan

04 Feb 19 Feb 04 Mar

19 Mar 04 Apr 19 Apr

Figure 9. Histogram pattern of regional scale Rn estimates at 1530 IST on every fortnight between Nov 2019 and Apr 2020 over
Indian landmass.
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(68%) or 4 March (73%) and lowest with 19 April
(23%).

5. Conclusion

A model investigates and estimates Rn and its
relevant Cuxes derived from satellite measure-
ments over the Indian landmass for daytime con-
ditions under cloudless skies. The study provided a
Brst-hand understanding of the Cow and behaviour
of radiation Cuxes over Indian landmass. The cur-
rent model and methodology can be used to esti-
mate Rn over India only under cloudless conditions
during daytime within 21% errors or in situ mea-
sured mean. Several uncertainties stemmed from
scale-mismatch of inputs and measurement foot-
prints as well as temporal scale of different model
inputs could be reasons for the Rn errors. However,
the present study showed that the modelled Rn

estimates produced an order of accuracy similar to
globally reported errors of satellite-based Rn esti-
mates. The bias correction was found to reduce the
errors of estimates to the tune of 5%. The regional
Rn has shown reasonable variability from tetra-
modal to bio-modal distribution in three winter
months. The current model can be used to estimate
operational regional-scale cloudless-sky Rn esti-
mates after validation for some more months and

over more in situ measurement sites. The gener-
ated Rn can be used as an input for generation of
actual ET, assimilation in the land surface model of
NWP and hydrological models.
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Table A1. One-dimensional sensitivity analysis of Rn to land surface and meteorological inputs.

Variable (s) Mean Deviation from mean

Percent deviation

in Rn

a 0.19 0.11–0.27 +12.6 to –8.6

SWin 759.6 W m�2 531.7–987.5 W m�2 –21.1 to +22.3

Ta 305.3 K 296.3–314.3 K –7.5 to +8.2

Ts 317.4 K 308.4–326.4 K +8.1 to �8.9

es 0.9 0.87–0.93 –2.3 to +2.2

ea 0.87 0.84–0.9 +2.6 to –2.6

Table A2. Statistical performance of diurnal plots over Jaisalmer and Nawagam on selected dates of 2020.

Location Dates No. of points

RMSE

(W m�2)

PRMSE (%) of

measured mean R2 MAE (%)

Jaisalmer 4 Nov 17 9.1 3.5 0.98 2.7

Jaisalmer 4 Dec 16 9.7 4.1 0.96 2.8

Jaisalmer 1 Jan 13 9.7 5.7 0.98 10.7

Jaisalmer 1 Feb 18 39.3 10.4 0.98 5.5

Jaisalmer 1 Mar 17 21.6 7.4 0.90 7.4

Jaisalmer 4 Apr 17 9.5 2.4 0.97 2.8

Nawagam 4 Nov 17 14.5 7.1 0.92 3.2

Nawagam 19 Dec 15 7.5 5.5 0.95 2.5

Nawagam 11 Jan 18 17.9 6.5 0.94 3.9

Nawagam 15 Feb 16 47.2 12.9 0.92 14.1

Nawagam 14 Mar 18 41.6 8.2 0.98 8.2

Nawagam 19 Apr 19 10.6 4.2 0.98 2.9

Samastipur 4 Nov 19 16.4 7.8 0.94 3.7

Samastipur 4 Dec 19 15.7 7.1 0.89 3.3

Samastipur 4 Jan 19 35.9 21.9 0.86 5.1

Samastipur 4 Feb 19 21.6 8.3 0.92 3.9

Samastipur 4 Mar 19 41.9 12.7 0.83 4.8

Samastipur 4 Apr 19 30.5 8.6 0.9 3.9

Table A3. Summary statistics of regional-scale Rn estimates at 1530 IST on every fortnight between Jan and Mar 2020 over
Indian landmass.

Days

Minimum

(W m�2)

Maximum

(W m�2)

Mean

(W m�2)

SD

(W m�2)

Median

(W m�2)

4 Nov 4 558 265 81 281

19 Nov 8 519 198 76 210

4 Dec 22 441 168 72 201

19 Dec 12 398 154 66 196

4 Jan 3 608 277 91 282

19 Jan 2 624 320 102 322

4 Feb 9 656 337 106 359

19 Feb 2 716 394 115 412

4 Mar 29 712 417 108 442

19 Mar 8 763 443 107 464

4 Apr 45 732 423 105 441

19 Apr 51 598 342 103 312

SD: Standard deviation.

Appendix
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