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A B S T R A C T   

The design of a water distribution network (WDN) is an optimization problem that is computationally chal-
lenging with conflicting objectives. This study offers an enhanced Chaotic Sobol Sequence-based Multi-Objective 
Self-Adaptive Differential Evolution (CS-MOSADE) algorithm for multi-objective WDN design. The CS-MOSADE 
algorithm was tested on two benchmark WDNs, and a real WDN. Optimization results indicate that the CS- 
MOSADE algorithm converged two to three times faster than the MOSADE and NSGA-IIalgorithms and led to 
better output in terms of even distribution of solutions and convergence towards the true Pareto-optimal front. 
Smaller spacing metric indicated better uniformity in the obtained solutions; and larger hyper-area and coverage 
function values depicted better convergence towards the true Pareto-optimal front for the CS-MOSADE algorithm 
compared to the other algorithms. The CS-MOSADE algorithm was then applied to solve a WDN expansion 
problem for optimal pump scheduling and minimization of Life Cycle Cost, maximization of reliability and 
minimization of Green House Gas (GHG) emissions. A significant reduction in GHG emissions of 2.17 x 106 kg 
was achieved at an additional cost of $0.55 x 107 when optimal pump scheduling was incorporated in the model 
of the real WDN over service life of 50 years.   

1. Introduction 

Design of Water distribution networks (WDNs) comprises a very 
complex optimization problem. The WDN design is a non-deterministic 
polynomial-time (NP) hard optimization problem, involving several 

complexities, like non-deterministic nature and a huge search space 
even for a small-sized problem (Alperovits & Shamir, 1977; Geem, 2006; 
Marques et al., 2018; Savic & Walters, 1997; Suribabu, 2009). For 
example, a network with 8 pipes and 14 available pipe sizes would 
comprise of a search space of 148. The search space increases 
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exponentially until it becomes insurmountable for large-scale real-world 
WDN problems. The computational requirement increases further by 
consideration of reliability in the problem. Babayan et al. (2005) 
required nearly 8 h for optimizing NewYork Tunnel (NYT) WDN prob-
lem, comprising of 21 links and 19 junctions on employing Robust 
Non-Dominated Sorting Genetic Algorithm-II (RNSGA-II) adopting 200 
as the population size for 500 iterations and 1000 MC samples solved on 
a system with a 2.6 GHz AMD FX-55 processor. A huge computational 
time of around 2-3 days was reported by Basupi & Kapelan (2015) for 
solving the NYT WDN problem employing Genetic Algorithm (GA) 
taking 100 as the population size for 6500 iterations and 200 MC sam-
ples solved on a system with 4-cores and a 2.67 GHz processor. Two loop 
WDN comprising of 8 links and 6 junctions required 19.72 and 1.211 h 
of computational time on consideration of hydraulic and mechanical 
reliabilities respectively on adopting a population size of 200 and 
maximum iterations of 1000 for solving using Self-Adaptive Differential 
Evolution Algorithm (SADE) (Sirsant & Reddy, 2020). Several other 
studies also reported huge computational demands for solving the reli-
ability based WDN design problem (Manolis et al., 2021; Raad et al., 
2010; Tanyimboh, 2017). The solution becomes particularly more 
challenging when Evolutionary Algorithms (EAs) are employed for 
solving the WDN design problem. For example, if 8 s of computational 
time is required for estimation of hydraulic reliability of a WDN prob-
lem, and is solved using a population size of 300 for maximum iterations 
of 1000, would require 2,400,000 s (around 28 days). 

Various techniques have been applied in past studies to solve the 
WDN design problem such as linear programming (LP) (Alperovits & 
Shamir, 1977; Fujiwara et al., 1987; Samani & Mottaghi, 2006), 
non-linear programming (NLP) (Bragalli et al., 2012; Mansouri et al., 
2015), heuristic techniques based on the satisfaction of demand and 
head constraints (Suribabu, 2012; Todini, 2000) and meta-heuristic 
techniques such as Genetic Algorithm (GA) (Keedwell & Khu, 2005; 
Savic & Walters, 1997; van Laarhoven et al., 2018), Particle Swarm 
Optimization (Ezzeldin et al., 2014; Suribabu & Neelakantan, 2006), Ant 
Colony Optimization (Maier et al., 2003; Zecchin et al., 2007), Differ-
ential Evolution (DE) (Suribabu, 2009; Vasan & Simonovic, 2010), 
Self-Adaptive Differential Evolution (SADE) (Sirsant & Janga Reddy, 
2018; Zheng et al., 2013), Whale optimization algorithm (Ezzeldin & 
Djebedjian, 2020) etc. Many past studies have shown that meta-heuristic 
techniques like EAs possess several advantages such as vast exploration 
of search space and quick convergence (El Ansary & Shalaby, 2014; 
Muhuri & Nath, 2019; Wu et al., 2021). Many self-adaptive versions of 
DE were developed such as SADE (Qin & Suganthan, 2005), 
Fuzzy-Adaptive DE (FADE) (Liu & Lampinen, 2005), DE with 
Self-Adaptive Population (DESAP) (Teo, 2006), DE with self-adapting 
control parameters (jDE) (Brest et al., 2006), jDE-2 (Brest et al., 
2007). The advantage of SADE over normal DE is that the mutation and 
crossover parameters are self-adapted by the algorithm itself, saving a 
lot of computational time in determining the most suitable values of 
these parameters (which are problem dependent) using sensitivity 
analysis. Few studies have shown that SADE has faster convergence and 
higher success rate compared to DE (Nandi & Janga Reddy, 2020; Sir-
sant & Janga Reddy, 2018; Zheng et al., 2013). More investigations 
applying EA techniques are needed to support these observations, which 
requires improvements in the existing EAs or development of new EAs. 

Past studies have shown that the WDN design problem should be 
formulated as a multi-objective optimization problem rather than a 
single objective problem considering the aspects of cost and reliability 
(Cunha & Marques, 2020; Prasad & Park, 2004; Vamvakeridou-Lyr-
oudia et al., 2005). Reliability is a measure of the extent of demand 
fulfillment considering the operational and failure conditions, which can 
be hydraulic and mechanical (Bao & Mays, 1990). Various past studies 
have been conducted for estimation of the reliability of WDNs. Shamir & 
Howard (1981) defined WDN reliability as an estimate of the shortages 
occurring as a result of failure of network elements. Other popular 
techniques include minimum cut set method (Su et al. 1987), Monte 

Carlo Simulation (MCS) method (Bao & Mays, 1990, Xu & Goulter, 
1998, Sirsant & Reddy, 2018), first-order reliability method (FORM) 
method Tolson et al. (2004). Few studies employed fuzzy sets to 
represent the uncertain water demands (Branisavljević et al., 2009, 
Shibu & Reddy, 2014, Geranmehr et al., 2019). Other recent studies 
include recovery-based resilience enhancement strategies (Liu et al., 
2020), reliability assessment model based on state space models (Valis 
et al., 2022). The major drawback of these techniques is that they are 
very time consuming in nature, and require multiple hydraulic simula-
tions for a single reliability estimation. 

To handle the problem of huge computational time, past few studies 
have proposed several reliability surrogate measures (RSMs) such as 
entropy (Awumah et al., 1990), resiliency (Todini, 2000), network 
resilience (Prasad & Park, 2004). These RSMs possess the benefit that 
their estimation is very easy and involves only a single hydraulic 
simulation for estimation of one value of RSM. Hence, the computational 
requirement reduces by a huge extent. Raad et al. (2010), Jung & Kim 
(2018), Monsef et al. (2019) investigated the performance of various 
RSMs as an alternative for mechanical and hydraulic failures. These 
studies found the lack of a single RSM performing efficiently as an 
alternative for both hydraulic and mechanical reliabilities. Creaco et al. 
(2016) proposed that optimizing resiliency and loop diameter unifor-
mity index along with cost can lead to more robust solutions compared 
to consideration of only cost and resiliency. However, this approach 
requires consideration of three objective optimization formulation, 
wherein two objectives are dedicated to ensure the reliability of the 
network. Sirsant & Reddy (2020) performed a thorough analysis of the 
various RSMs and proposed a Combined Entropy Network Resilience 
(CERI) index, which was reported to be functioning satisfactorily for the 
cases of hydraulic and mechanical reliabilities. The approach is a 
simplification as it combines two objective functions into one, which is a 
weighted normalized sum of entropy and resiliency.. The present study, 
therefore, employs CERI as a substitute for reliability for performing 
multi-objective design of WDNs. 

Several multi-objective EAs were employed to solve the WDN design 
problem such as Multi-Objective Genetic Algorithm (MOGA) (Johns 
et al., 2019; Prasad & Park, 2004), Multi-Objective Particle Swarm 
Optimization (Montalvo et al., 2010; Torkomany et al., 2021), 
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) (Artina et al., 
2011; Zheng et al., 2016), Clustered Non-dominated Archiving Ant 
Colony Optimization (Clustered-NA-ACO) (Mehzad et al., 2020), Pareto 
navigator technique (Moazeni & Khazaei, 2021) etc. Chaos theory has 
been employed in several past studies to enhance the performance of the 
various optimization models such as chaos GA (Yang et al., 2008; 
Gharooni-fard et al., 2010; Xie et al., 2016), Multi-Objective Differential 
Evolution-Chaos Shuffled Frog Leaping Algorithm (MODE-CSFLA) 
(Fang et al., 2018), chaotic PSO (Li et al., 2021). The chaotic versions of 
the optimization techniques have generally proved to be performing 
better in terms of faster convergence than the basic versions of these 
tools. The chaotic sequence majorly prevents the algorithm from getting 
trapped into the local optima. Therefore, in the present study, a chaotic 
version of the MOSADE algorithm is proposed and tested. 

Another issue with the MOSADE algorithm is the generation of 
random numbers for performing mutation operation. The algorithm 
randomly generates a set of population members for performing the 
mutation operation at each stage. The previous versions of the model use 
randomly generated population members at each iteration. Few past 
studies have employed Sobol sequence for generating random numbers, 
which is a type of Quasi-random sequence (QRS). QRS are basically 
random numbers with partial randomness. The Sobol random sequences 
cover the search space more evenly than the pseudo random numbers. 
The use of QRS for performing mutation operation is found to be better 
than pseudo random sequence in PSO (Pant et al., 2008; Wannakarn 
et al., 2010). Thus, in the present study, we employ Sobol sequences for 
random generation of population members for carrying out mutation 
operation. 
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Consideration of the environmental aspect in designing the WDNs 
has emerged as important issue in the past few years. Several studies 
incorporated reduction of GHG emissions as one of the objectives in the 
optimization framework so as to arrive at sustainable design solutions 
(Wu et al., 2010, 2013, Lee et al., 2018). Zhang et al. (2021) presented a 
review on the GHG emissions associated with water and wastewater 
systems. It was found that electricity consumption is the largest source of 
GHG emissions for water systems. Additionally, the use of secondar-
y/auxiliary pumps for supplying water to high rise buildings constituted 
the major source of emissions in water distribution networks. They 
suggested that optimal pressure management comprising of an efficient 
pressure management system should be prioritized so as to achieve 
sustainable design solutions. Therefore, reduction of GHG emissions due 
to pumping is considered in the present study. 

Also, few studies have suggested that consideration of life cycle cost 
(LCC) is essential in the design formulation rather than only the cost of 
pipes (Jayaram & Srinivasan, 2008; Piratla et al., 2012). Liu et al. (2020) 
presented life cycle operation resilience assessment of WDNs and found 
that replacing the burst pipes with new ones improves the operational 
resilience. Thus, it is essential to consider the LCC, which reduces the 
overall capital and operational cost as well as assist with the accounting 
of different failures and the expenses associated with them. WDNs are 
also prone to future changes such as population variations, urban 
sprawl, change in climatic and seasonal hydro-meteorological parame-
ters etc. (Tsegaye et al., 2020; Sirsant & Reddy, 2021). Several studies 
presented different expansion strategies to ensure satisfactory perfor-
mance of the WDNs considering these future changes, such as phased 
expansion method (Creaco et al., 2014b), flexible WDN expansion 
method Basupi & Kapelan, 2015), MOSADE-DP method (Sirsant & 
Reddy, 2021), GA based Flexibility Optimization (GAFO) method (Tse-
gaye et al., 2020). Past studies reveal that consideration of the future 
changes in advance while planning the expansions is essential for an 
optimal solution. 

The present study thus proposes a novel Chaotic Sobol Sequence 
based Multi-Objective Self-Adaptive Differential Evolution (CS- 
MOSADE) algorithm for the multi-objective design and expansion of 
WDNs considering the aspects of cost, reliability and GHG emissions. 
The proposed CS-MOSADE algorithm is an improved multi-objective 
version of the SADE algorithm (Qin & Suganthan, 2005), employing 
non-dominated sorting (Deb et al., 2002) for generation of Pareto fronts 
with two new improvements: (1) use of chaos theory for initial popu-
lation generation and (2) use of Sobol sequences for generation of 
random numbers required in the mutation operation. The specific ob-
jectives of the current study are (1) to present and evaluate the perfor-
mance of CS-MOSADE algorithm by comparing it with the results of 
well-established algorithms such as MOSADE and NSGA-II, and (2) to 
apply the CS-MOSADE algorithm for cost minimization, reliability 
maximization and GHG emissions minimization on a real WDN and 
evaluate the benefits compared to optimization against only cost and 
reliability. 

Thus, the current study tries to answer the following research 
questions, (1) Would CS-MOSADE algorithm reduce the computational 
time needed to arrive to the optimal solutions, if so what % reduction in 
computational time and closeness to the true optimal solutions are 
achieved, (2) What differences, if any, would adding the reduction in 
GHG emissions as a third objective make in the obtained solutions. 

2. Methods 

The problem formulation for multi-objective design of WDNs is 
presented first, which requires minimizing the LCC, maximizing reli-
ability, and minimizing GHG emissions. The method for estimation of 
LCC is presented thereafter, which requires estimation of break rate of 
pipes. CERI is used as a surrogate to reliability, the details of which are 
presented after that, followed by the method for estimation of GHG 
emissions. The optimization techniques adopted in the study, i.e., 

MOSADE, CS-MOSADE and NSGA-II are explained thereafter, followed 
by the metrics for performance comparison of the multi-objective opti-
mization techniques. The overall methodology adopted in the present 
study is presented in Fig. 1. 

2.1. Problem formulation 

The mathematical framework for the optimization model can be 
represented as below 

MinimizeLCC (1)  

MaximizeReliability (2)  

MinimizeGHGemissions (3) 

Subject to: 

HD ≥ Hmin(forallnodes) (4)  

∑
HLi −

∑
Ep = 0 (forallloops) (5)  

∑
Qin −

∑
Qout = 0(forallnodes) (6)  

with 

HLj =
10.68Q1.85

j Lj

C1.85
HW D4.87

j
(7) 

And 

Qj =
π
4

D2
j Vj (8) 

Here, Eq. (4) represents the minimum head requirement for different 
nodes, Eq. (5) represents the loop head loss, Eq. (6) represents the 
conservation of mass condition, Eq. (7) is the Hazen William’s equation 
for calculation of head loss, and Eq. (8) is for flow calculation. where, Dj 
and Lj represent the diameter and length of link j respectively, HD rep-
resents the head, Hmin represents the minimum desired head at any 
junction, HL corresponds to the head loss for a pipe, Ep is the energy 
added by the pump, Qin and Qout correspond to the discharges flowing 
towards and away from a node respectively, CHW is the Hazen-William’s 
roughness coefficient, and V is the velocity of flow in a particular pipe. 
The variables in Eq. (7) stated above for head loss calculation should be 
in SI units, i.e., diameter, length and head in meters, and discharge in 
m3/s. The current study uses CERI as a substitute for reliability for 
designing the WDNs. 

2.1.1. Estimating life cycle costs 
The present study considers LCC as the initial installation cost (IC) 

and the break cost (BC, which includes repair and replacement costs) 
(Loganathan et al., 2002) 

LCC = IC + BC (9) 

The consideration of LCC is particularly necessary when considering 
the expansions, where parallel pipes are added in stages, and it becomes 
essential to consider the present value of all expansions as well as break 
repair and replacement costs. 

The IC can be calculated as a function of length and diameter of pipes 
using 

IC =
∑np

j=1
f
(
Dj)Lj (10) 

The break cost can be calculated as below 

BC =
∑np

j=1
BR(j) + RC(j) + AR(j) (11) 
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The first component, BR, represents the break repair cost, i.e., the 
cost for repairing the broken pipes; RC corresponds to the replacement 
cost, which is the cost for replacing a pipe with a new one (as the break 
rate has reached the threshold value, when it will be more economical to 
replace the pipe with a new one than to repair it); and AR represents the 
repair cost for any repairs after all the replacements of the jth pipe are 
made within the planning horizon (i.e. after k(j) replacements are done, 
the cost for repairs to be done for the years [k(j). s(j) +1] till the end of 
the planning horizon). Eqs. (12)–(14) were used to calculate the present 
value of the break repair and replacement costs, as the parallel pipes are 
added in stages (Loganathan et al., 2002). 

BR(j) =

⎧
⎪⎨

⎪⎩

∑k(j)

m=1

∑s(j)

r=1

[
1

(1 + I)((m− 1)s(j))+r.NDj .e
A((m− 1)s(j))+r.BDj .Lj

]

, if k(j) ≥ 1

0, otherwise
(12)  

RC(j) =

⎧
⎪⎨

⎪⎩

∑k(j)

m=1

1
(1 + I)m.s(j).RDj .Lj, if k(j) ≥ 1

0, otherwise

(13)  

AR(j) =
∑y

r=k(j)s(j)+1

[
1

(1 + I)r .NDj .e
A(r− k(j)s(j))BDj .Lj

]

(14) 

In the above equations, s(j) is the service life of pipe j, I represents the 
discount rate per year, NDj represents the number of breaks per year per 
unit length for links having diameter Dj, BDj represents the repair cost per 
break for links having diameter Dj, A represents the break growth rate 
coefficient per year, RDj represents the replacement cost per unit length 
for links having diameter Dj. The values of BDj, RDj and A were taken 
from a past study by Loganathan et al. (2002). y represents the design 
period, and k(j) represents the number of times link j needs to be 
replaced during the entire planning horizon and is given by 

k(j) = int
(

y
s(j)

)

(15)  

2.1.2. Estimating break rate and service life of pipes 
The breakage of pipes is assumed to grow exponentially with time 

following the equation given below, to account for the ageing and other 
factors that may lead to an increase in the future break rate of pipes 
(Shamir & Howard, 1981). 

N(t) = N(t0).e(A(t− t0)) (16)  

where N(t) represents the number of breaks per year per unit length for 
time t, N(t0) represents the number of breaks per year per unit length at 
time t=t0, and A is the growth rate coefficient per year. 

As can be seen from the above equation, the number of breaks will 
increase with time, and after a certain period, the break repair cost will 
be so high that replacement will be economical. The break rate at which 
replacement needs to be done is termed as the threshold break rate and 
can be estimated using the following equation (Loganathan et al., 2002). 

BRth =
ln(1 + I)

ln
(

1 + CR
Lj

) (17)  

where CR is the cost ratio which is equal to (Crepair/Creplace) and is 
expressed as a function of diameter, such that they follow a linear 
relationship as CR =pD+q, where p and q are the regression coefficients 
and D is the diameter in mm, I is the discount rate per year and Lj is the 
length of jth link. As per the study by Suribabu & Neelakantan (2006), 
the values of p and q are taken as p  = 0.0048 and q = 6.6805, so that CR 
= 0.0048 D + 6.6805. The estimation of threshold break rate is partic-
ularly useful to find out the break rate at which the pipe needs 
replacement, and consequently the total number of replacements of a 
particular pipe throughout the planning horizon. 

Substituting the value of the threshold break rate as N(t) in the Eq. 
(6), t0 as 0 and t as s (service life of pipe), it leads to 

s =
1
A

ln
(

BRth

N0

)

(18) 

The estimation of service life of a pipe will ultimately aid in deter-
mining the number of times the pipe needs replacement during the 

Fig. 1. Overall framework.  
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entire planning horizon, as presented in Eq. (15). 

2.1.3. Combined entropy-resiliency index (CERI) 
CERI is estimated as the weighted normalised sum of entropy and 

resiliency (Sirsant & Reddy, 2020). 

CERI = w1.(S / Smax) + w2.
(
Ir
/

Ir,max
)

(19)  

where, S and Smax are the entropy and maximum entropy respectively 
for a WDN, Ir and Ir,max are the resiliency and maximum resiliency 
respectively, w1 and w2 are the weights assigned for entropy and resil-
iency respectively. Smax was calculated by considering that all paths 
supplying water to a demand node carry equal flow, thus the total flow 
in a link will be equal to the summation of all the flows in the path. More 
details about estimation of maximum entropy flows can be found in 
Tanyimboh & Templeman (1993). On the other hand, the value of Imax is 
always set to 1 (Todini, 2000). The values of w1 and w2 are such that they 
vary between 0 and 1 and their summation equals 1. As suggested by 
Sirsant & Reddy (2020), the value of w1 and w2 are adopted as 0.4 and 
0.6 respectively. 

Entropy is defined as the measure of the degree of uncertainty 
depicted by a probability distribution (Shannon, 1948). As a result, a 
solution with a greater entropy makes fewer assumptions about the 
system and the accompanying uncertainties. For the case of WDN 
design, the uncertainties comprise of random demands, random 
component failure, unpredictable fluctuations in terms of firefighting 
demands, etc. As per the notion of entropy, a probability distribution of 
flow values with a greater entropy assumes fewer uncertainties and can 
thus manage them more robustly. As a result, solutions with a larger 
entropy should be more reliable. The following equation is adopted in 
the study for estimation of entropy (Tanyimboh & Templeman, 1993) 

S = So +
∑N

j=1
PjSj (20)  

where, So is the entropy because of multiple supply sources, Sj is the 
entropy for jth demand node, for j varying from 1 to N, where N being 
the number of demand nodes, and Pj is the percentage of total flow that 
reaches jth node and is estimated as 

Pj =
Tj

T
(21)  

where, Tj is the total flow reaching jth node, and T corresponds to the 
entire network’s total flow and is equal to the summation of nodal 
demands. 

The terms S0 and Si are estimated as follows 

S0 = −
∑

j∈I
p0jlnp0j (22) 

Is is the set of supply sources 

Sj = −
∑

jk∈NDj

pjklnpjk (23)  

where, NDj corresponds to the set of all the outflows including any de-
mand from jth node, pjk is the fraction of total outflow Tj including any 
demand from jth node 

Pjk =
qjk

Tj
(24)  

where, qjk is the outflow for link jk. 
On substituting all the above values in Eq. (20), the following 

equation is obtained 

S = −
∑

j∈Is

p0jlnp0j +
∑N

j=1

Tj

T0

[

−
∑

jk∈NDj

pjklnpjk

]

(25) 

The other term used in CERI estimation is resiliency Proposed by 
Todini (2000). Calculating resiliency involves estimation of available 
energy from the sources as well as internal energy dissipation in the 
system. Maximizing resiliency means maximizing the energy available 
for internal dissipation in case of sudden failure. There are various 
improved formulations available in the literature to estimate the resil-
ience of a water network, such as modified resilience index (Jayaram & 
Srinivasan, 2008), the pressure driven variant of resilience index also 
termed as the Generalized resilience/failure (GRF) index (Creaco et al., 
2016). .The advantage of the GRF index is that it can be used effectively 
for pressure driven analysis, which is the preferred modelling approach, 
especially for pressure deficient conditions such as pipe breakage, de-
mand fluctuations, leakages etc. The GRF is estimated as the summation 
of resilience index and failure index which are described below. 

The resilience index is calculated as 

Ir =
max(quserH − d.Hdes, 0)
Q0H0 + QPHP − d.Hdes

(26)  

where, quser is the actual flow delivered to the user, estimated using the 
formulation proposed by Wagner et al. (1988) for pressure driven 
analysis, H is the actual head at the nodes, d is the desired flow for 
different nodes, Hdes is the minimum desired head at different nodes, Q0 
is the outflow from the supply sources, H0 is the head at the supply 
source, Qp is the flow through pumps, Hp is the additional head delivered 
by the pumps. 

The failure index is calculated as 

If =
min(quserH − d. Hdes, 0)

d.Hdes
(27) 

The GRF was then calculated as proposed by Creaco et al. (2016) 

GRF = Ir + If (28) 

However, in the present study, the solutions with negative values of 
Ir were discarded by the optimization algorithm, by using a penalty 
function, as they represent less redundant solutions, and thus are 
considered as infeasible. 

2.1.4 Estimation of green house gas emissions 
The emissions related to the energy consumption due to operation of 

the pumps is included in the present study. The GHG emission due to 
pumping can be estimated as (Wu et al., 2010) 

GHG = EF[AEC] (29)  

where, EF is the emission factor, AEC is the annual electricity con-
sumption in kWh. In the present study, an EF value of 0.598 is adopted 
for UAE, as per the recommendation of Ji et al. (2016). Even though the 
UAE is planning to rely more on green energy (Alzaabi & Mezher, 2021), 
which would result in lower GHGs for the energy consumed, the authors 
assumed that this would be offset by the higher impact of lower GHG 
emissions in the future (Weisser, 2007). Thus, the EF was assumed 
constant for the planning period. 

2.2. Optimization techniques 

The present study proposes an improved Chaotic Sobol Sequence 
based MOSADE algorithm. The details of the MOSADE algorithm are 
presented first, followed by the improved version proposed in the pre-
sent study. The results are compared with the ones obtained by the 
NSGA-II algorithm, the details of which are presented thereafter. 

2.2.1. MOSADE algorithm 
The MOSADE algorithm involves multi-objective version of SADE 

algorithm by combining the Parent and Child vectors and forwarding the 
top Pop (population size) vectors to the next iteration. The steps 
involved in the MOSADE algorithm are as follows 
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(1) Initialization of parameters of the algorithm such as the popula-
tion size (Pop), maximum number of iterations (Imax) and muta-
tion and crossover factors mean values (Fm and CRm)  

(2) Initialize the starting population (called the target vector) 
depending on the upper and lower bounds of the decision vari-
able. Estimate the value of the objective function for each 
solution.  

(3) For each population member, mutation and crossover factor 
values are generated, by considering them to follow a normal 
distribution having mean Fm and CRm and standard deviation of 
(σF and σCR ) of 0.3 and 0.1 respectively.  

(4) (4) Mutation is performed on each population member which 
formulates the mutant vector using the following equation 

Vi,G = Xr1 ,G + Fi
(
Xr2 ,G − Xr3 ,G

)
(30)  

where Vi,G = [v1,i,G, v2,i,G , …, vD,i,G] is a mutant vector associated 
with population member i and generation G; Xr1,G, Xr2,G and Xr3,G 
are three randomly chosen population vectors from the current 
generation; and Fi is the mutation factor for population member i. 
The purpose of mutation is to generate new vectors, which is a 
combination of the features of old vectors.  

(5) Crossover is performed to formulate the trial vector using the 
following rule, 

uj,i,G =

{
vj,i,G, if

(
randj[0, 1]<CRor(j = jrand)

xj,i,G, otherwise (31)  

where Ui,G =[u1,i,G, u2,i,G , …, uD,i,G] is ith trial vector at genera-
tion G; uj,i,G is the jth decision variable for ith member at gener-
ation G; randj is a random value between 0 to 1 for each 
dimension of the vector; and jrand is a random number from 1 to D, 
the dimension of each vector. The purpose of performing cross-
over is to randomly change a decision variable in the mutant 
vector so that the target vector and the mutant vector are not the 
same.  

(6) Calculate the values of the objective function for the trial vector 
that was produced.  

(7) Repeat steps 4 to 6 for each population member. 
(8) Combine the trial and target vectors and extract the top NP so-

lutions by conducting non-dominated sorting and crowding dis-
tance calculations as performed in NSGA-II (Deb et al., 2002).  

(9) Based on the successful values of the mutation and crossover 
factors for the previous 10 iterations, update the values of Fm and 
CRm after every 10 iterations, and build a new set of these factors 
for each member of the population using the updated Fm and CRm 
values, as stated in step (3) above. Any combination of mutation 
and crossover parameters is regarded successful if the offspring 
produced by this combination formulates a fitter or non- 
dominated solution than the parent vector.  

(10) The procedure is continued until all the termination criteria have 
been met. The ’maximum number of iterations’ is used as the 
termination criteria in this investigation. 

2.2.2. CS-MOSADE algorithm 
In the CS-MOSADE algorithm, the chaotic sequence is employed for 

population initialization, instead of random population initialization. 
Chaos can be understood as unsettling or order without predictability. 
They occur in deterministic non-linear systems which are unpredictable 
in nature. Employing chaotic maps for generation of initial population 
will lead to a large number of possible starting points, which ultimately 
may lead to various possible solutions on applying the optimization tool. 
Various kinds of chaotic maps exist such as logistic, gauss, sinus, sinu-
soidal iterator, tent map etc. Özer & Ertokatlı (2010) analysed various 
chaotic maps and found the sinus map to be the most efficient in 
improving the quality of solutions. Thus, in the present study, sinus map 
is employed which is represented by the following equation (Özer & 

Ertokatlı, 2010) 

Xn+1 = 2.3(Xn)
2sin(πXn) (32)  

where, Xn+1 represents the (n+1)th term of the sequence, which is a 
function of Xn, the nth term. The behaviour of the sinus map for different 
starting values (i.e. Xn) of 0.5, 1, 2 and 3 is shown in Fig. 2. It can be seen 
that the chaotic behaviour of the sinus map is irrespective of the initial 
value. Also, it covers a wide range of values, which will ultimately 
ensure the initial population generation covers an extensive range and 
variation of solutions. 

Another improvement made in the MOSADE algorithm is the 
employment of Sobol sequence for generating random numbers for 
mutation operation. Sobol sequence is a type of quasi random sequence 
(QRS) with less discrepancy compared to the pseudorandom sequence. If 
the fraction of points in a sequence belonging to a random set A is near to 
proportionate to the measure of A, the discrepancy of the sequence is 
said to be low. The QRS are deemed to be more efficient that pseudo-
random sequence because of their ability to explore the search space 
more evenly than the pseudorandom sequence (Chi et al., 2005). As a 
result, utilizing the Sobol sequence to generate random numbers will 
result in a more balanced exploration of the search space. Details 
regarding formation of the Sobol sequences can be accessed in Pant 
et al. (2008). 

As a result, instead of entirely random production of population 
members, the three arbitrarily chosen population vectors Xr1,G, Xr2,G, 
and Xr3,G utilized in Eq. (28) are created using Sobol sequences in this 
study. For each dimension, a 3-dimensional Sobol sequence is formed, 
with random points equal to the population size utilized in the MOSADE 
method. Following that, the random numbers are scaled from 1 to 
population size. To preserve variation in the population vectors picked 
for a single population member at various runs, a pseudo random 
number generator is employed to shuffle the rows of the size (population 
size x 3) matrix of the random numbers created. The steps involved in 
the CS-MOSADE algorithm are presented in Fig. 3. 

2.2.3. NSGA-II algorithm 
The NSGA-II method, developed by Deb et al. (2002), is a 

multi-objective evolutionary algorithm that employs non-domination 
sorting and crowding distance computations to perform the basic pro-
cesses of population generation, selection, crossover, mutation, and 
formulation of the new population. Tournament selection, simulated 
binary crossover, and polynomial mutation are employed in this study. 
Deb et al. (2002) provided a thorough description of the procedures 
necessary in implementing the NSGA-II algorithm. 

2.3. Performance metrics 

Four metrics for performance evaluation of multi-objective evolu-
tionary algorithms from the literature are employed in the present study, 
namely, Inverted generational distance, Spacing metric, Hyper-volume, 
and Coverage function. 

2.3.1. Inverted generational distance (IGD) 
The IGD metric, developed by van Veldhuizen & Lamont (1999), 

calculates the distance between the members of the derived 
non-dominated set of solutions and the actual Pareto-optimal front. IGD 
(A, P) can be calculated as: 

IGD(A,P) =

∑

τ∈P
d(τ,A)

|P|
(33)  

where P is the true Pareto-optimal vector set, A is the acquired non- 
dominated set of solutions, and d (τ, A) is the Euclidian distance be-
tween the elements of P to its nearest member in A. Therefore, the 
smaller the value of IGD, the closer it gets to the genuine Pareto-optimal 
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Fig. 2. Chaotic behaviour of sinus map for initial value of (a) 0.5 (b) 1 (c) 2 and (d) 3.  

Fig. 3. Steps involved in CS-MOSADE algorithm.  
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front, with 0 signifying absolute convergence. Faster convergence of an 
algorithm is depicted by fast convergence of the IGD value towards 0, 
which indicates the time required to reach an optimal WDS design. The 
IGD values are used in the present study to determine the number of 
function evaluations needed for different optimization problems, pre-
sented in Section 4.1. Similarly, the number of function evaluations 
needed for each WDN problem are found by determining the number of 
iterations at which IGD converges to zero, as discussed in Section 4.3. 

2.3.2. Spacing metric 
Schott & Jason (1995) formulated a metric to measure the spacing 

and uniformity among the derived non-dominated solutions and can be 
calculated employing the following equation 

S =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
|Q|

∑|Q|

i=1
(di − d)2

√
√
√
√ (34)  

where Q is the Pareto-optimal solutions set obtained and di is the dis-
tance measure which is the minimum value of the sum of absolute dif-
ference in objective function values between ith solution and any other 
solution acquired in the non-dominated set can be calculated as 

di = min

{
∑M

m=1

⃒
⃒f i

m − f k
m

⃒
⃒

}

∀k = 1, 2, 3,Nandk ∕= i (35)  

here fmi represents the mth objective function value of ith solution, M is 
the number of objectives, k takes the values from 1 to N (the number of 
non-dominated solutions obtained) except i, and dis the mean value of 
the above distance measure. 

Smaller value of spacing metric represents better performance of the 
algorithm. Thus, spacing metric is considered as a measure of the quality 
of Pareto-optimal solutions in terms of even distribution in the Pareto- 
optimal front. Thus, smaller spacing metric indicates a Pareto front 
with more evenly distributed solutions, and thus the uniform coverage 
of the solutions in the Pareto-front by the algorithm. The spacing metric 
values are presented in Section 4.3 to compare the relative uniformity in 
the Pareto fronts obtained for different WDN problems solved using 
different algorithms. 

2.3.3. Hyper-volume/hyper-area 
This metric developed by van Veldhuizen & Lamont (1999), esti-

mates the volume in objective space covered by the members of the 
Pareto-optimal front, with regard to the worst solution, for problems 
where all objectives are to be minimized. It is estimated by calculating 
the summation of all the hyper-cubes of solution i ϵ Q, estimated with 
respect to a chosen worst solution W, with the solution i as the diagonal 
corners of the hyper-cube. Similar to the computation of HV, the union 
of all hyper-rectangles, referred to as Hyper-area (HA), is employed in 
the case of two-objective optimization. Thus, if ai represents the 
hyper-rectangle estimated for solution i, then the Hyper-area (HA) is 
obtained as 

HA = area
(⋃|Q|

i=1
ai

)
(36) 

Normalisation of the objective function values is required for esti-
mating HV/HA, else it would lead to misleading values. Larger the value 
of HA for an algorithm better is its performance compared to another 
algorithm with smaller value for a particular problem. Therefore, HA is a 
measure of the extent of convergence of the algorithm towards the true 
Pareto-optimal front, indicating how close is the obtained Pareto-front 
to the true Pareto front. HA values are presented in Sections 4.1 and 
4.3 to compare the convergence of different algorithms towards true 
Pareto-optimal front for different WDN problems. 

2.3.4. Coverage function 
Introduced by Zitzler & Thiele (1998), the coverage function (CF) 

can be used as a means to evaluate the performance of two algorithms 
leading to Pareto-optimal sets, say P and Q, and is determined by esti-
mating the proportion of solutions in Q which are weakly dominated by 
the solutions in P. The objective functions of the solutions in P should not 
be poorer than the corresponding objective functions of the solutions in 
Q, for a given solution in P to be considered weakly dominating a 
particular solution in Q. Each solution in Q must be weakly dominated 
by at least one solution in P for the solution set P to weakly dominate the 
set Q. Thus, 

C(P,Q) =
|{q ∈ Q|∃p ∈ P : p ≥ q}|

|Q|
(37) 

Therefore, CF is a measure of the relative convergence of one algo-
rithm over another towards the true Pareto-optimal front. Hence, CF can 
be used as an indicator of how well an algorithm converges compared to 
another. CF values are presented in Section 4.3 to compare the relative 
convergence of one algorithm over another for different WDN problems. 

2.4. WDN expansion incorporating future changes in water demand 

Expansions are planned for WDNs considering the future changes in 
water demand in terms of adding parallel pipes to the existing pipes at 
different stages, such that the LCC of all the expansions is minimum, as 
well as the minimum reliability (out of all stages) is maximum. Further, 
the optimal scheduling of pumps is performed considering extended 
period simulations (EPS) such that the total GHG emissions due to 
electricity consumption is minimum. 

Thus, the overall problem formulation comprises of determination of 
parallel pipes to be added at different stages as well as optimal pump 
scheduling so as to achieve the minimum LCC, maximum reliability and 
minimum GHG emissions. The solution methodology comprises of 
determination of size, location and time of the parallel pipes to be added 
such that LCC is minimum and reliability is maximum; as well as the 
optimal hours of operation of pump(s) such that the GHG emissions are 
minimum. 

3. Case studies of WDNs 

The CS-MOSADE algorithm was first applied and tested on two 
benchmark WDN problems, Two loop and GoYang WDNs. The Two loop 
WDN comprises of 8 links, 6 junctions, and a supply source supplying 
water by gravity at a fixed head of 210 m (Alperovits & Shamir, 1977). 
There are 14 available pipe diameters ranging from 25.4 to 609.6 mm. 

Fig. 4. Layout of (a) Two loop (b) GoYang and (c) Al-Rahmania WDNs. (Here 
R1 depicts the reservoir). 
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All the pipes have a fixed length of 1000 m having a CHW value of 130. 
The layout of Two loop WDN is shown in Fig. 4(a). GoYang WDN is a 
medium sized WDN comprising of 30 links and 22 junctions, a pump of 
constant power of 4.52 kWh, and a supply source at a static head of 71 
m. The layout of GoYang WDN is shown in Fig. 4(b). There are 8 
available pipe diameters ranging from 80 to 350 mm. The pipes have a 
roughness coefficient CHW value of 100. More details about the GoYang 
WDN can be found in Kim et al. (1994). 

The CS-MOSADE algorithm is then applied on a real WDN of Al- 
Rahmania zone, located in Sharjah, UAE. The WDN comprises of 339 
pipes, 395 nodes, and a reservoir at a fixed head of 237.27 m. The pipes 
are made of riveted steel having CHW of 100. There are 12 available pipe 
diameters ranging from 150 mm to 650 mm, with their unit costs 
varying from 165.36 AED to 498.07 AED. The layout of Al-Rahmania 
WDN is presented in Fig. 4(c). 

The water demand is assumed to grow exponentially, as per the 
following equation 

DT = D ∗

(

1 +
R

100

)T

(38)  

where, DT represents the demand at time period T, D is the demand at 
the beginning of planning horizon and R is the annual rate of increase of 
demand. R is considered as 3 in the present study. 

4. Results 

First the CS-MOSADE algorithm is validated by application on nine 
constrained test problems for multi-objective optimization. Thereafter, 
the CS-MOSADE algorithm is applied and tested on two benchmark 
WDNs, the Two loop and GoYang, followed by the application to a real 
WDN (Al-Rahmaniya). The results are compared with those obtained 
using MOSADE and NSGA-II algorithms. The performance comparison 
of the three algorithms is presented. The CS-MOSADE algorithm is then 
applied for optimal pump scheduling and expansion of WDNs consid-
ering the objectives of minimizing the LCC, maximizing the reliability 
and minimizing the GHG emissions. The results are compared to those 
when only the objectives of LCC minimization and reliability maximi-
zation are considered. The comparison is important to elucidate whether 
or not the inclusion of GHG minimization as an objective in the opti-
mization problem had an impact on the outcomes. 

4.1. Validating the performance of CS-MOSADE 

In this study the CS-MOSADE algorithm was first applied on nine 
constrained test problems for multi-objective optimization. The results 
were compared to those obtained in past studies (Datta & Regis, 2016; 
Peng et al., 2017; Yang et al., 2019). The BHN, SRN and TNK test 
problems comprise of 2 decision variables and 2 objective functions 
each. CF1, CF2 and CF3 comprise of 2 objectives and 10 decision 

variables. NCT1, NCT2 and NCT3 comprise of 2 objectives and 30 de-
cision variable each. The comparisons are presented in Table 1. The 
values of the IGD and HV obtained in the present study, are better in all 
the cases compared to the past studies. Although the improvement in the 
values of the performance metric is small, since the problems are 
benchmark test functions, even a small improvement can be considered 
significant. This implies that the CS-MOSADE algorithm has faster and 
higher convergence towards the absolute Pareto-optimal solutions. It is 
evident that the improvement is more pronounced as the number of 
decision variables increases. This indicates that the performance of the 
CS-MOSADE algorithm is more suitable for problems with a moderate 
number of decision variables. 

4.2. Obtained Pareto-optimal fronts 

The Pareto-optimal fronts obtained for the three WDN problems is 
presented in Fig. 5. The results are presented by combining the solutions 
obtained for 20 independent runs for each algorithm. The population 
size is chosen as 200 for Two loop, 300 for GoYang and 3500 for Al- 
Rahmaniya WDN, after performing some preliminary analysis, for a 
maximum iteration of 1000 for Two loop and GoYang and 5000 for Al- 
Rahmaniya WDN as suggested by past studies (Keedwell & Khu, 2006, 
Monsef et al., 2019). The number of iterations is kept large enough so as 
to ensure that convergence to true Pareto-optimal front occurs within 
this chosen number of iterations. It can be observed that all three al-
gorithms lead to similar Pareto fronts. However, on close observation of 
Fig. 5, it can be seen that CS-MOSADE algorithm covers a wider range of 
solutions in terms of capturing the lowest and highest cost solutions. 
Comparison of a representative set of solutions obtained using the three 
algorithms for Two loop WDN is presented in Table 2. The solutions 
presented are in terms of cost and reliability values, diameter of pipes 
obtained, head and flow values for lowest cost and highest reliability 
solutions obtained using each algorithm, as well as solutions with a 
reliability of 0.8. From Table 2, it can be seen that both the lowest cost 
and highest reliability solutions obtained using CS-MOSADE algorithm 
are better compared to MOSADE and NSGA-II. This implies that the 
CS-MOSADE algorithm is covering a wider range of solutions compared 
to the MOSADE and NSGA-II algorithms. For example, in case of Two 
loop WDN, the lowest cost solution captured by CS-MOSADE and 
MOSADE is (419,000, 0.312), whereas that captured by NSGA-II is (436, 
000, 0.413). The highest reliability solution captured by CS-MOSADE 
and NSGA-II is (4,020,000, 0.994), while the one captured by 
MOSADE is (3,100,000, 0.992). On comparing typical solutions for 
reliability level of 0.8, the CS-MOSADE algorithm leads to lower cost 
solution compared to the other algorithms. This implies that 
CS-MOSADE algorithm is converging better than the other two algo-
rithms. The head and flow values for the solutions vary slightly for 
different nodes. For example, in case of Two loop WDN, for reliability 
level 0.8, the head values for the solution obtained using CS-MOSADE 

Table 1 
Performance comparison of CS-MOSADE algorithm with past studies on benchmark multi-objective test problems  

Test problem Source Algorithm used (in past study) IGD Hyper-volume      
Present study Past study Present study Past study 

BNH Datta & Regis (2016) SAES-RBFa 0.0016 - 5065.66 5053.54 
SRN Datta & Regis (2016) SAES-RBFa 0.0018 - 5094.19 5082.90 
TNK Datta & Regis (2016) SAES-RBFa 0.0023 - 30198.34 29268.88 
CF1 Peng et al. (2017) EADCb 0.0006 0.0008 3.51 3.47 
CF2 Peng et al. (2017) EADCb 0.0015 0.0018 3.76 3.61 
CF3 Peng et al. (2017) EADCb 0.0028 0.0035 3.35 3.26 
NCT1 Yang et al. (2019) MODE-SaEc 0.0392 0.0484 11.27 11.07 
NCT2 Yang et al. (2019) MODE-SaEc 0.0887 0.0967 11.32 11.07 
NCT3 Yang et al. (2019) MODE-SaEc 0.0156 0.0261 11.55 11.27  

a Surrogate assisted evolution strategy radial basis function, 
b : Evolutionary algorithm with directed weights for constraint handling, 
c : Multi-Objective differential evolution with self-adaptive epsilon 
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algorithm are (57.46, 45.61, 50.62, 53.83, 38.23, 41.83), for reliability 
value of 0.808, while the head values for the solution obtained using 
MOSADE are (57.46, 45.63, 50.61, 53.89, 38.11, 42.03), for reliability 
value of 0.809. The head values are varying since the diameter values 
are changing for different pipes. Thus, the solutions are hydraulically 
similar for similar reliability levels, but better in terms of cost for the 
case of CS-MOSADE algorithm. 

The performance metrics of the three algorithms for all the three 
WDNs is presented in Table 3. It can be seen that the values of the 
spacing metric are the least for CS-MOSADE algorithm for all three WDN 
problems. This implies that the Pareto-optimal solutions obtained are 
the most even in case of CS-MOSADE algorithm. On comparing the HA 
values, the CS-MOSADE algorithm leads to the largest values of HA. This 

implies that the Pareto fronts are converged to the highest extent in case 
of CS-MOSADE algorithm. The values of CF for the three algorithms 
shows that the highest values are obtained for S(CSM,N) which means 
that the highest percentage of solutions of NSGA-II are being weakly 
dominated by one or more solutions of the CS-MOSADE algorithm. 
While the values of S(M,CSM) and S(N,CSM) are very less. This means 
that very less percentage of solutions acquired through CS-MOSADE 
algorithm are weakly dominated by one or more solutions obtained 
using MOSADE and NSGA-II algorithms. Thus, considering the three- 
performance metrics it can be seen that CS-MOSADE algorithm per-
forms better than MOSADE and NSGA-II algorithms in terms of even 
distribution of solutions, convergence towards true Pareto-optimal front 
and percentage of solutions that dominate the solutions obtained using 

Fig. 5. Pareto-optimal fronts acquired through CS-MOSADE, MOSADE and NSGA-II algorithms for (a) Two loop (b) GoYang and (c) Al-Rahmaniya WDNs.  
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other algorithms. 

4.3. Solution convergence for different algorithms 

For Two loop WDN, considering a population size of 200, the CS- 
MOSADE, MOSADE and NSGA-II algorithms converged at 275, 580 
and 800 solutions respectively. Thus, the number of function evalua-
tions needed is around 55,000, 116,000 and 160,000 for CS-MOSADE, 
MOSADE and NSGA-II algorithms, requiring around 1.92, 4.05 and 
5.591 h respectively. In case of GoYang WDN, the CS-MOSADE, 
MOSADE and NSGA-II algorithms converged at nearly 250, 300 and 
550 iterations respectively on adopting a population size of 300. The 
number of function evaluations thus needed is around 75,000, 90,000 
and 165,000 for CS-MOSADE, MOSADE and NSGA-II algorithms, 
requiring a computational time of around 3.05, 6.65 and 8.91 h 
respectively. In case of Al-Rahmaniya WDN problem, the CS-MOSADE, 
MOSADE and NSGA-II algorithms converged at around 200,300 and 
600 iterations for a population size of 3500, thus requiring 700,000, 
1,050,000 and 2,100,000 number of function evaluations. The compu-
tational time needed is around 30.45, 60.67 and 80.78 h for CS- 
MOSADE, MOSADE and NSGA-II algorithms. Thus, it can be 
concluded that the computational time in case of CS-MOSADE algorithm 
is reduced by around half compared to MOSADE algorithm, and by one 
third compared to NSGA-II algorithm. The main reason for faster 
convergence of the CS-MOSADE algorithm as compared to the other 
algorithms is due to the incorporation of Chaotic sequence for initial 

population generation and Sobol Sequence for generating random 
numbers for performing mutation operation. The Chaotic sequence 
helps in maintaining a very huge variation of initial solutions, which 
ultimately leads to a large number of possible outcomes and thus leads to 
an extensive exploration of the search space. The use of Sobol sequence 
further enhances the exploration of the search space in terms of choosing 
the population members for mutation operation more evenly than the 
traditional approach. Therefore, it can be said that the CS-MOSADE al-
gorithm acts as an effective tool for performing multi-objective design of 
WDNs. 

4.4. Application of CS-MOSADE algorithm for WDN expansion 

The CS-MOSADE algorithm is applied for WDN expansion and 
optimal pump scheduling for the three WDNs considering future 
changes in water demand for LCC minimization, reliability maximiza-
tion and minimization of GHG emissions. The expansions are planned in 
terms of adding parallel pipes to the existing ones in stages of 10 years 
for a planning horizon of 50 years. Diurnal variation in water demand is 
considered to determine the optimal pump scheduling in terms of time 
intervals when the pump should be operated or closed. The pumping 
energy thus consumed is then used for estimation of GHG emissions. The 
Pareto optimal solutions obtained for three-objective optimization are 
presented in Fig. 6. The results of the 3-objective optimization are then 
plotted for only two objectives i.e., LCC and CERI, and compared to 
those obtained when GHG emissions are not considered in the model. 

Table 2 
Comparison of a representative set of solutions for two loop WDN obtained using different optimization algorithms.  

Solution Type Algorithm Solution (Cost ($), 
CERI) 

Diameter of pipes (mm) Head values at nodes (m) Flow in pipes (m3/h) 

Lowest cost solution CS-MOSADE and 
MOSADE 

(419,000, 0.312) (457.2, 254,406.4, 101.6, 406.4, 
254, 254, 25.4) 

(53.25, 30.46, 43.45, 
33.80, 30.44, 30.55) 

(1120, 336.87, 683.13, 32.57, 530.56, 
200.56, 236.87, 0.56) 

Lowest cost solution NSGA-II (423,000, 0.413) (508, 355.6, 355.6, 25.4, 304.8, 
25.4, 355.6, 254) 

(55.96, 39.41, 46.69, 
44.83, 31.61, 29.98) 

(1120, 568.83, 451.17, 0.60, 330.57, 
0.57, 468.83, 199.42) 

Highest reliability 
solution 

CS-MOSADE and 
NSGA-II 

(4,020,000, 0.994) (609.6, 609.6, 609.6, 609.6, 508, 
609.6, 609.6, 609.6) 

(58.34, 48.01, 52.88, 57.8, 
42.59, 47.63) 

(1120, 461.85, 558.15, 202.04, 
236.11, 93.89, 361.85, 293.89) 

Highest reliability 
solution 

MOSADE (3,100,000, 0.992) (609.6, 609.6, 609.6, 558.8, 508, 
457.2, 609.6, 558.8) 

(58.35, 48.01, 52.88, 
57.81, 42.65, 47.67) 

(1120, 463.71, 556.28, 169.47, 
266.82, 63.18, 63.71, 263.18) 

Solution with 
reliability 0.8 

CS-MOSADE (752,000, 0.808) (558.8, 355.6, 508, 355.6, 355.6, 
25.4, 304.8, 304.8) 

(57.46, 45.61, 50.62, 
53.83, 38.23, 41.83) 

(1120, 288, 732, 282, 330, 0, 188, 200) 

Solution with 
reliability 0.8 

MOSADE (761,000, 0.809) (558.8, 355.6, 508, 355.6, 355.6, 
101.6, 304.8, 304.8) 

(57.46, 45.63, 50.61, 
53.89, 38.11, 42.03) 

(1120, 286, 734, 276, 338, 8, 186, 192) 

Solution with 
reliability 0.8 

NSGA-II (762,000, 0.817) (558.8, 355.6, 508, 355.6, 355.6, 
25.4, 355.6, 304.8) 

(57.46, 45.29, 50.73, 
54.23, 38.34, 42.23) 

(1120, 313, 707, 257, 330, 0, 213, 200)  

Table 3 
Performance comparison of CS-MOSADE, MOSADE and NSGA-II algorithms for multi-objective design of WDNs, statistics presented in terms of best, worst, mean, and 
standard deviation (SD) values for Spacing metric, Hyper-area and Coverage function.*  

Case study Statistic Performance metric 
Spacing metric Hyper-area Coverage function 
CS- 
MOSADE 

MOSADE NSGA- 
II 

CS- 
MOSADE 

MOSADE NSGA- 
II 

S(CSM, 
M) 

S(M, 
CSM) 

S(CSM, 
N) 

S(N, 
CSM) 

S(M, 
N) 

S(N, 
M) 

Two loop Best 0.0110 0.0165 0.0168 1.986 0.763 0.694 0.4512 0.1875 0.7252 0.1667 0.5486 0.2041 
Worst 0.0139 0.0179 0.0185 1.990 0.546 0.587 0.2316 0.0612 0.4187 0.0134 0.2418 0.0781 
Mean 0.0119 0.0175 0.0165 1.764 0.645 0.652 0.3515 0.1153 0.5176 0.1256 0.3786 0.1418 
SD 0.0121 0.0098 0.0075 0.0025 0.0032 0.0321 0.1241 0.0465 0.2245 0.0332 0.1518 0.0716 

GoYang Best 0.0508 0.0449 0.0751 2.7142 2.6781 2.7104 0.2865 0.0516 0.3319 0.0514 0.2718 0.0414 
Worst 0.0621 0.0759 0.0803 2.7014 2.6591 2.6215 0.1681 0.0129 0.1613 0.0256 0.1701 0.0318 
Mean 0.0613 0.0775 0.0791 2.7032 2.6614 2.6771 0.1043 0.0467 0.2817 0.0589 0.1988 0.0513 
SD 0.0079 0.0089 0.0021 0.0005 0.0008 0.0041 0.0341 0.0086 0.0587 0.0059 0.0425 0.0089 

Al-Rahmania 
WDN 

Best 0.0285 0.0371 0.1171 17.338 17.275 17.018 0.1671 0.1461 0.1643 0.1541 0.8474 0.2329 
Worst 0.0426 0.0519 0.1514 17.185 17.312 16.841 0.0573 0.0171 0.0452 0.0264 0.0628 0.0375 
Mean 0.0385 0.0459 0.1316 17.561 17.314 16.987 0.7821 0.0659 0.8645 0.0754 0.8137 0.0778 
SD 0.0067 0.0071 0.0136 0.0118 0.0119 0.0641 0.2231 0.1366 0.3167 0.1428 0.2651 0.1279 

Note: In S(CSM,M), CSM=CS-MOSADE and M=MOSADE, and in S(CSM,N), N=NSGA-II. 
Bold numbers indicate the best performing algorithm. 

* The results are obtained by 20 independent runs for both algorithms. 
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The results are shown in Fig. 7. The two cases are categorised as scenario 
1 (3-objective optimization) and scenario 2 (2-objective optimization) 
respectively. From Fig. 7(a), it can be seen that the least and highest cost 
solutions are different for the two cases. In case of scenario 1, the lowest 
and highest cost solutions are (12378533.61, 0.790) and (121403769.9, 
0.943) respectively. While those for scenario 2 are (12066758.98, 
0.792) and (129618905.6, 0.944) respectively. Thus, the optimal solu-
tion changes when GHG emissions are considered in the model. How-
ever, the GHG emission values are not correspondingly the lowest and 
highest in case of lowest and highest cost solutions. For example, the 
GHG emissions for the lowest and highest cost solutions for scenario 1 
are 86327.38 kg and 98728.47 kg respectively. The GHG emission will 
be however, fixed value of 982430 kg, for scenario 2, assuming that the 
pumps will operate at all time periods. The solution corresponding to the 
lowest GHG emission is (58344331.31, 0.916). Similar observations can 
be made from Fig. 7(b) and Fig. 7(c) for GoYang and Al-Rahmaniya 
WDNs respectively. Thus, it can be seen that a trade-off exists between 
LCC and reliability. However, there is no direct trade-off that exists 
between LCC and GHG emissions or reliability and GHG emissions. If we 
consider 0.8 as the minimum reliability to be maintained, the corre-
sponding optimal solutions are 12833634.41 and 12721581.26 respec-
tively for the two scenarios, with GHG emissions of 93460.47 and 
982430 kg. Similar observations can be made from Fig. 7(b) and Fig. 7 
(c) for GoYang and Al-Rahmaniya WDNs respectively. Thus, it can be 
seen that a trade-off exists between LCC and reliability. However, there 
is no direct trade-off that exists between LCC and GHG emissions or 
reliability and GHG emissions. 

A representative sample of solutions for the two benchmark WDNs 
for both the scenarios is presented in Table 4. The results are presented 
in terms of the diameter of parallel pipes to be added, the time at which 
these pipes need to be added, the head values at different nodes at the 

end of the planning horizon, and the pumping hours. In case of Two loop 
WDN, it can be seen that if we consider 0.8 as the minimum reliability to 
be maintained, the corresponding optimal solutions are 1.43 x 107 and 
1.36 x 107 respectively for the two scenarios, with GHG emissions of 
14103.6 and 26192.4 kg, with 19 and 24 h of pumping respectively. 
Thus, it can be seen that with a moderate increase in LCC, the emissions 
can be lowered by a considerable amount. 

In case of Al-Rahmaniya WDN, a fixed GHG emission of 2.61 x 106 kg 
requiring LCC of 1.88 x 107 $ for reliability level of 0.81 occurs for 
scenario 2. However, the emission can be reduced to 0.44 x 106 kg, for a 
reliability of 0.80 requiring an LCC of 2.43 x 107 $ for scenario 1. This 
shows a huge reduction in GHG emissions of 2.17 x 106 kg can be ach-
ieved at an additional cost of 0.55 x 107 when optimal pump scheduling 
is incorporated in the model to minimize the GHG emissions. Thus, it can 
be seen that the LCC is although higher for scenario 1, the GHG emission 
is reduced. Therefore, the consideration of GHG emissions as a third 
objective leads to considerable benefits in terms of lower emissions, 
although requiring a slightly higher cost for the same reliability level. 

5. Discussion 

The comparison of the CS-MOSADE algorithm with past studies on 
the WDN design problems is presented in Table 5. The results are 
compared in terms of spacing metric, Number of function evaluations 
(NFE), generational distance, and different forms of hyper-volume 
(RHV, NHV, CNHV). The present study showed a better performance 
in terms of all these metrics. Lower spacing metric implies more evenly 
distributed Pareto optimal solutions, lower NFE implies lesser compu-
tational time needed, lower generational distance implies more 
convergence towards the true Pareto-optimal front. Higher value of HV 
again implies more converged Pareto-optimal front. Thus, it can be 

Fig. 6. Pareto-optimal front for WDN expansion for (a) Two loop (b) GoYang and (c) Al-Rahmaniya WDNs considering LCC minimization, reliability maximization 
and GHG emissions minimization. 
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concluded that the CS-MOSADE algorithm outperforms the algorithms 
applied in past studies in terms of lower computational time and better 
convergence to true Pareto-optimal fronts. 

The present study tested and compared the performance of the 
hybrid CS-MOSADE for two benchmark WDNs composed of 8 and 30 

pipes; and also applied it on a real network comprising of 339 pipes. 
Also, the present study considered future expansions by only modelling 
the changes in water demand, which sets certain limitations to the re-
sults of the analysis. This study, however, did not incorporate changes in 
water demand due to climatic and seasonal variations, these need to be 

Fig. 7. Solutions of WDN expansion plotted to depict the trade-off between LCC and reliability for (a) Two loop (b) GoYang and (c) Al-Rahmaniya WDNs for two 
scenarios. Scenario 1: 3-objective optimization for minimizing LCC, maximizing reliability and minimizing GHG emissions, Scenario 2: 2-objective optimization for 
minimizing LCC and maximizing reliability. 

Table 4 
Comparison of a representative set of solutions obtained using CS-MOSADE for expansion of Two loop WDN.  

Scenario Solution type Solution (LCC ($), 
CERI, GHG emissions 
(kg)) 

Diameter of parallel pipes (mm) Time (in years) at which 
parallel pipes are to be 
added 

Head values at nodes at 
the end of design period 
(m) 

Total 
Pumping 
Hours 

1 Solution with 
reliability 0.8 

(1.43 x 107, 0.80, 
14103.6 ) 

(0, 304.8, 355.6, 152.4, 355.6, 254, 
304.8,203.2, 0, 304.8, 406.4, 0, 355.6, 254, 
304.8, 304.8) ) 

(20, 20, 20, 20, 20, 30, 20 
40, 20, 40, 30, 40, 50, 50, 
40, 50) 

(44.15, 65.10, 63.45, 
64.94, 40.01, 39.10) 

19 

2 Solution with 
reliability 0.8 

(1.36 x 107, 0.80, 
26192.4 ) 

(203.2, 304.8, 355.6, 254, 355.6, 203.2, 
254, 254, 0, 355.6, 355.6, 0, 355.6, 203.2, 
355.6, 254)) 

(20, 20, 20, 30, 20, 20, 20, 
40, 20, 40, 40, 50, 50, 50, 
50, 50)) 

(44.22, 61.98, 63.01, 
66.32, 40.11, 39.35) 

24  
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carefully considered before certain generalization can be made 
regarding optimal network design or operation. 

6. Conclusions 

This study presented and evaluated the CS-MOSADE algorithm for 
multi-objective design and expansion of WDNs. The CS-MOSADE algo-
rithm was first applied and tested on three WDN problems for mini-
mizing cost and maximizing reliability. The results were compared to 
those acquired through MOSADE and NSGA-II algorithms. Thereafter, 
the CS-MOSADE algorithm was applied for WDN expansion and optimal 
pump scheduling considering LCC minimization, reliability maximiza-
tion and minimization of GHG emissions. The major conclusions that 
can be drawn based on the results obtained are as follows:  

1. The CS-MOSADE algorithm is observed to converge two times and 
three times quicker than the MOSADE and NSGA-II algorithms, 
respectively. The CS-MOSADE algorithm also leads to better Pareto 
fronts in terms of larger percentage of solutions dominating the so-
lutions obtained using other algorithms, more even Pareto fronts and 
better convergence towards the absolute Pareto optimal front. Thus, 
the CS-MOSADE algorithm is found to be an effective and reliable 
tool for solving the WDN design problem.  

2. Consideration of GHG emissions in the optimization model leads to 
higher cost solutions for the same reliability level, but with lower 
emissions. This implies that GHG emissions can be lowered by 
consideration of optimal pump scheduling, but with higher expen-
diture. Therefore, optimal pump scheduling leads to some significant 
benefits in terms of low emissions and should be considered in 
optimal planning and operation of WDNs, which ultimately will lead 
to sustainable design and expansion solutions. 

Future studies should, however, focus on consideration of other as-
pects that may affect the future changes in water demand, such as cli-
matic and seasonal variations, land use/land cover change, change in 
water availability etc. Also, incorporation of other components such 
optimal allocation of tanks should be incorporated to study, if it leads to 
significant improvements in terms of reduction of cost and GHG emis-
sions for reliability-based design and expansion problems. 
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