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Abstract
Treatment of organic waste has gain importance in the last decade due to stringent environmental laws. Fruit and vegetable 
waste (FVW) is potent substrate to be utilized for the recover energy via anaerobic digestion, a sustainable approach for the 
waste to energy transformation. Co-digestion of FVW and anaerobic sludge (AS) was explored in batch anaerobic digestion 
for a retention time of 31 days. Mixing ratio of (AS:FVW) 25:75 claimed 22% and 43% higher biogas yield as compared to 
50:50 and 75: 25 ratio, respectively. Highest methane yield of 62% which is equivalent to 275.9 NmL/g VS was observed 
for (AS:FVW) 25:75 ratio. Further, application of microwave (MW) treatment enhanced the solubilization of the feedstock 
and rendered 10% higher methane yield as compared to untreated (AS:FVW) 25:75 ratio at operating power of 300W. 
Performance analysis indicated highest VS reduction of 77% for MW-treated FVW at optimal ratio of FVW and AS. Kinetic 
modelling was done, and experimental data fits well to the first-order model as compared to modified Gompertz model. Rate 
constant at optimal ratio with microwave pre-treatment was found to be 0.111, while the value for untreated optimal ratio 
was found as 0.1085.
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1  Introduction

Alarming increase in population coupled with industriali-
zation and urbanization has led to increase in per capita 
generation of municipal solid waste and energy demand. 

Energy security and climate change are the two major 
challenges which are faced globally. Conventional energy 
sources such as fossil fuels, coal, and gas are depleting 
fast, and their extensive use has led to climate change, 
health disorders, and environmental degradation. Moreo-
ver, their finite supply, rising price, and geopolitical domi-
nance in some parts of the world have drawn inclination 
of the scientific community towards the need for greater 
usage of sustainable renewable energy sources. Among 
the numerous renewable energy sources, wind and solar 
are dominant; however, the role of bioenergy is still a 
quest. Bioenergy generated from biomass can play a sig-
nificant role in bridging the gap between energy demand 
and supply. Biomass is cheaply and abundantly available 
in most of the countries including India. Their utiliza-
tion for generation of energy will resolve their disposal 
issue and will reduce the nation’s dependency on the oil-
producing countries. By 2023, 5000 biomethane plants in 
India are expected to be operational under the Sustainable 
Alternative towards Affordable Transport (SATAT) initia-
tive. These facilities will be able to use municipal solid 
waste, agricultural waste, and cattle manure as feedstock 
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to produce roughly 15 million tonnes of biomethane annu-
ally [1]. FVW is major component of the municipal solid 
waste (MSW). Almost 30% of the FVW that is produced 
is being lost during the supply chain [2]. In present sce-
nario, almost 75% of the FVW that is being generated are 
dumped to landfill site. Currently, the conventional tech-
niques such as landfilling and incineration have negative 
impact on environment due to release of greenhouse gas 
emissions and requires huge operational cost [3]. How-
ever, due to stringent environmental laws, disposal of 
FVW in sanitary landfill becomes difficult, and also high 
biodegradability of FVW poses serious threat to the envi-
ronment. Even, owing to high biodegradability of FVW, 
it holds huge potential to generate green energy [4]. AD is 
an environmental friendly sustainable technology that con-
verts waste to energy. AD involves series of biochemical 
reaction that convert complex organic substances via enzy-
matic and bacterial activities to biogas. Biogas is mainly 
composed of methane and carbon dioxide along with trace 
gases [5] and digestates. Biogas is a promising source of 
green energy as compared with conventional fossil fuels. 
Biogas can be utilized in numerous day-to-day applica-
tions such as fuels for transportation, electricity, and heat 
generation while mitigating the emission of greenhouse 
gases (GHGs) [6]. Also, digestate is by-product of both 
acidogenesis and methanogenesis process; however, both 
of them differ in their characteristics. Acidogenesis and 
methanogenesis process basically differ in terms of liquid 
separation and the way the microorganisms are retained 
in the reactors. Since acidogenesis is the early stage of 
AD, most of the organics have not been fully degraded 
and mainly retained in the solid phase. Hence, acidogenic 
digestate is commonly referred as the solid digestate. The 
methanogenesis is the final stage of anaerobic digestion 
in which most of the organics break down, degraded, and 
converted into the liquid digestate [7]. Digestate can be 
efficiently utilized as soil conditioner. In current era, many 
researchers are attempting to address the challenges asso-
ciated with AD and to optimize the process parameters 
for its successful application towards waste management 
[8]. FVW is rich in biopolymer content which makes it 
an ideal substrate for the production of biogas via AD 
[9]. On the other hand, the presence of high biodegrad-
able organic matter in FVW results in generation of excess 
volatile fatty acids, which are detrimental for methano-
genic bacteria, and results in inhibition of the AD pro-
cess. To overcome the former limitation, co-digestion of 
FVW along with other waste streams will not only resolve 
VFA inhibition but also enhance the natural buffering 
capacity of the digester [10, 11]. Co-digestion of FVW 
with municipal sewage sludge has been investigated by 
Arhoun et al. [12], and it was reported that co-digestion 
of the two improved methane yield as well as digester 

performance. Co-digestion of the FVW and food waste 
was explored in the past by Lin et al. [13], which proved 
to be a potent substrate for co-digestion; moreover, it not 
only improved the digester stability but also nullified the 
drawbacks of the monodigestion of FVW. FVW contains 
lignin in their skin and seed [14, 15], which makes the 
bacterial hydrolysis difficult. Presence of the lignin barrier 
and cellulose restrict the hydrolytic enzymes and methano-
gens and have limited access to the feedstock during AD 
[16]. Hence, bacterial hydrolysis is the rate-limiting step 
for the organic waste that is rich in polysaccharides [17]. 
Furthermore, to expedite hydrolysis and consequently the 
entire AD process, numerous pre-treatment methods such 
as physical, chemical, physiochemical, and biological have 
been developed [2, 18], which not only enhance the biogas 
yield but also helped to reduce reaction time and decrease 
the volume of residual particles for final disposal. Pre-
treatment methods break down the lignin barrier present 
in the skin and seed of the FVW which are otherwise dif-
ficult to be accessed by bacterial community and therefore 
prolong the hydrolysis period [2, 14, 15]. Among all the 
pre-treatment methods, thermal pre-treatment of the FVW 
has gain interest owing to its enhanced sludge solubiliza-
tion, digestion performance, and improved dewaterability 
[19, 20]. Microwave treatment particularly in the cate-
gory of thermal treatment has gained popularity due to its 
environmental and energy conservation properties [21], 
because it prevents heat losses that happen during energy 
transmission in conventional heating. In microwave heat-
ing, direct vibration and rotation of dielectric molecule are 
feasible which maximize heat transfer. Microwave treat-
ment enhances the solubilization of the feedstocks and 
breaks down intermolecular bond of the substrates as it 
becomes weak during the microwave treatment. Effect of 
microwave treatment on biogas yield has been studied by 
some researchers [19]. The effect of MW thermal treat-
ment on AD of anaerobic sludge has been investigated 
by Coelho et al. and Eskicioglu et al.[22,23] [23]. Micro-
wave pre-treatment of activated sludge was investigated 
by Apples et al. [24], and they pointed out an increase 
in total solid and sCOD content by 214% by applica-
tion of heating duty of 336 kJ/kg, and subsequently 50% 
increase in the biogas production was observed during 
the mesophilic anaerobic digestion. A pilot-scale study of 
thermal pre-treated activated sludge at 65 °C for 20 min 
showed a 2- to 3-fold increase in the solubility ratio and, 
as expected, an increment of 30–40% in biogas produc-
tion [25]. From the literature, it is evident that microwave 
treatment is mainly deployed either for sludge treatment 
or agricultural biomass [26, 27], and no study has been 
found yet for the highly biodegradable waste like FVW. 
Therefore, this study was targeted to explore the potential 
of the microwave treatment during anaerobic co-digestion 
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of three different mix ratios of the FVW and AS under 
mesophilic regime.

2 � Materials and methods

2.1 � Materials

2.1.1 � Substrate

Fruit and vegetable wastes of seasonal vegetable and 
fruits, viz., cabbage leaves (20%), tomato (10%), capsi-
cum (10%), bottle gourd (15%), cauliflower leaves (15%), 
eggplant (10%), banana (10%), and papaya ( 10%), used 
in the current study was procured from the wholesale veg-
etable and fruit market. The ratio depicted the amount of 
waste being generated in the market on that particular day; 
however, it varies daily. All the vegetable and fruit wastes 
were washed to get rid of any impurity being present. Parts 
of the vegetable and fruits which were more decayed were 
discarded. This FVW is subjected to mechanical pulveri-
zation to felicitate size reduction. The selected waste was 
then cut into size of approx.10 cm and then grinded using 
domestic grinder to make smooth paste. These wastes were 
stored in freezer at 4 °C until further use.

2.1.2 � Inoculums

Anaerobic sludge (AS) as a source of inoculum was col-
lected from anaerobic digester of Vachan Dairy and Food 
Products Ltd. Kharora, district Raipur, Chhattisgarh, India, 
of capacity 1000 m3. Inoculum plays a vital role in AD. 
Absence of the inoculum delays the digestion period and 
reduces the biomethane production. It is the main source 
of the microorganism which carries out biodegradation 
[28]. Anaerobic sludge was subjected to degasification for a 
period of 5 days prior to experiment to deplete the residual 
biodegradable organic matter present. The characteristics of 
AS and FVW are presented in Table 1.

2.2 � Methods

Experimental set‑up  Batch anaerobic digesters are made up 
of PET bottles of capacity 500 ml. Two sampling ports were 
provided, one at the top for measuring biogas and another at 
the height of 30% for the measurement of pH and VFA. The 
digesters were flushed with nitrogen gas at the headspace to 
ensure anaerobic condition in the digester. These digesters 
were kept inside the water bath at 37 °C to maintain constant 
temperature. Biogas was measured daily by water displace-
ment method. Experimental set-up used in the experiment 
are depicted in Fig. 1. The biogas samples were ejected from 
the septum (made up of butyl rubber) self-sealing cap, which 
is provided at the top for the purpose of measuring meth-
ane content. Methane content of the biogas was determined 
using gas chromatograph (Nucon5700, India) equipped with 
a thermal conductivity detector (TCD). The hydrogen was 
used as carrier gas at a constant flow rate of 30 mL/min. The 
oven and injector temperature was maintained at 40°C, while 
that of TCD was maintained at 60°C. For taking a sample of 
biogas from digesters and injection of the gas sample into 
the gas chromatograph, a 500-μL gastight syringe (Hamil-
ton, USA) was used. Volatile fatty acid was also measured 
according to ferric hydroxamate method, described by Chat-
terjee et al. [29] using a single-beam spectrophotometer.

2.2.1 � Chemicals and instruments for pre‑treatment

Laboratory-grade sodium bicarbonate was procured from 
Avantor, Rankem, India. 2N solution of sodium bicarbo-
nate was prepared by dissolving stoichiometric amounts of 
sodium bicarbonate in deionized water for maintaining pH. 
Microwaving was done by a laboratory grade microwave 
system provided by NuWav Pro Nutech Analytical Tech-
nologies Pvt. Ltd., India (SL. no.8-19 pro 114). Deionized 
ultrapure water (Merck Millipore, Germany) was used for 
pre-treatment as well as for AD whenever required.

Table 1   Characteristics of the inoculum and substrate

S. No Parameter Anaerobic sludge Substrate (FVW)

1. pH 7 .2 5.5
2 Alkalinity 

(mg/L) as 
CaCo3

4100 25

3 Total solids ( 
Wet basis)

5% 9.3%

4 Volatile solids 3.1%  8 .1%
5 C (%) 30 44
6 N (%) 2 2
7 C/N ratio 15 22 Fig. 1   Experimental set-up for anaerobic co-digestion FVW and AS

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



	 Biomass Conversion and Biorefinery

1 3

2.2.2 � Microwave pre‑treatment

MW pre-treatment was performed to speed up the hydroly-
sis of the waste. For this purpose, laboratory grade micro-
wave was deployed, and the pre-treatment was carried 
out under varying microwave power from 200 to 500 watt 
for a period of 10 min. Desired ratio of the substrate and 
inoculum was taken in 500-ml beaker and is subjected to 
MW treatment. During microwaving process, continuous 
automatic stirring was done at a moderate speed of 900 
rpm, and the higher limit of temperature (safety temp.) 
was fixed at 98°C. After completion of microwaving, the 
content was allowed to cool at room temperature, and water 
was added to make up the losses due to the microwave 
heating process.

2.2.3 � Analytical methods

The leachate was withdrawn periodically from the sampling 
port for the analysis of the pH, volatile fatty acid (VFA), 
and alkalinity. Proximate and ultimate analysis of the FVW 
and inoculums was carried out to determine their mois-
ture content, total solids, and volatile solids as per National 
Renewable Energy Laboratory (NREL) protocol. Elemental 
analysis was done by a CHNS analyzer (Thermo Finnigan-
Flash EA-1112, USA). The volume of biogas generated was 
measured by the water displacement method. The compo-
sition of biogas was measured by a gas chromatograph 
(Nucon5700, India) equipped with a thermal conductivity 
detector (TCD).

Calculation  Performance of the anaerobic digestion was 
analyzed through reduction in volatile solids (VS) which is 
determined using the following equation.

The stability of the digester is determined using VFA/
alkalinity ratio, for the smooth operation of the digester, and 
it should lie between 0.2 and 0.4 [30].

3 � Results and discussion

3.1 � Optimization of mixing ratio for co‑digestion 
of FVW and anaerobic sludge

Many researchers have investigated the efficiency of the 
co-digestion of FVW and AS [11, 31]. Presence of high 
percentage of volatile solids and moisture content makes 
it a potent candidate for the biomethane production [2]. 

(1)

Volatile Solids Reduction (%) =
VS inlet − VSoutlet

VSinlet
× 100

However, the higher percentage of the volatile solids 
assures the presence of highly biodegradable organic mat-
ter and often suffers the quick hydrolysis. This results in 
accumulation of the VFA which is detrimental for the 
methanogenesis process [32, 33]. This shortage can be 
overcome by implying different strategies, namely, co-
digestion of different waste streams, reducing OLR, and 
deploying multistage digester [34]. Present study aims 
at evaluating the feasibility of the anaerobic co-diges-
tion of the FVW and AS in different proportion towards 
maximizing the biogas yield using single-stage anaerobic 
digester. Batch study was carried out to optimize the dif-
ferent co-digestion ratios of (AS:FVW), (25:75), (50:50), 
and (75:25) for a retention time of 31 days. Daily biogas 
yield for different ratios were recorded using water dis-
placement method. The biogas production started from 
second day itself in all the digester. Results revealed 
that (25:75) achieved highest biogas yield equivalent to 
38.2 NmL/gVS on third day itself, which is attributed to 
presence of easily biodegradable organics. The (50:50) 
ratio achieved highest biogas yield as 29.5 NmL/g VS 
on day 5, and (75:25) ratio achieved highest biogas yield 
as 21.5 NmL/gVS on day 14, respectively. The biogas 
produced during the entire course of the digestion var-
ied from high to low; this is attributed to the shift in 
pH of the digester which kept fluctuating from time to 
time. Reduced biogas yield for the mix ratios (50:50) and 
(75:25) may be attributed to the decreased concentration 
of the substrate, lower C/N ratio, and digesters’ buffering 
capacity. Result shows the monodigestion of the FVW 
achieved 58% lower biogas yield when compared with 
co-digestion of the FVW and AS at (25:75) ratio, which 
confirms that inclusion of the AS enhances the biometh-
ane yield of the waste. Inclusion of the AS provides the 
necessary microbial consortia present for the conversion 
of the organic matter to biogas. The numbers of peaks 
were also different for each digester; there were5, 7, 7, 
and 6 peaks for different mix ratios as depicted in Fig. 2 
pointing out the daily and cumulative biogas yield for 
mix ratios. The number of peaks shows the activity level 
of microbes. The results obtained are in accordance with 
Arhoun et al. and Pavi et al. [12, 35]. Cumulative biogas 
for the AD of FVW and AS for all the different ratios 
are depicted in Fig. 4b. Result indicated that cumulative 
biogas yield was influenced by mixing ratios of the FVW 
and AS. Highest cumulative biogas yield was noted for 
the mix proportion of the (25:75) which is equivalent 
to 445.3 NmL/gVS. On the other hand, other ratios dis-
played cumulative biogas yield equivalent to 368.7 NmL/
gVS and 279.8 NmL/gVS for (50:50) and (75:25) ratios, 
respectively, while the monodigestion of FVW recorded 
the lowest cumulative biogas yield as 185.8 NmL/gVS.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Biomass Conversion and Biorefinery	

1 3

3.2 � Effect of microwave pre‑treatment 
on the biogas production

The rate of soluble organic formation and its subsequent 
conversion into volatile fatty acids determine the efficiency 
of the AD process. In present study, differently hydrolyzed 
substrates were subjected to AD. The VFA produced are 
the product of hydrolysis and acidification and a precursor 
for methane production. MW pre-treatment was carried 
out for the optimal co-digestion ratio of 25:75 at differ-
ent irradiation power for 10 min. Figure 3a and b rep-
resent the daily and cumulative biogas yield at optimum 
25:75 (ISR) for MW pre-treatment at different irradiation 
power. Results revealed that microwave pre-treatment 
enhances the hydrolysis of the FVW which maximizes the 
biogas and methane yield. The rate for biogas production 

fluctuated from higher value to lower value for untreated 
as well as pre-treated feedstock. The fluctuation in the 
rate of biogas production and methane content is mainly 
because of the increased solubility and of the pH shift 
brought on by microbial activity in the digester. Since, 
AD is the series of the microbial assisted biochemical pro-
cess including hydrolysis, acidogenesis, acetogenesis, and 
methanogenesis, involving different microbial consortia in 
each phase [36]. The highest volume of biogas obtained 
was 38.2 NmL/gVS for untreated feedstock on day 3 and 
40.2, 44.6, 36.45, and 32.25 NmL/gVS on day 2 for 200, 
300, 400, and 500W microwave-treated feedstock, respec-
tively. Result revealed that biogas production started on 
day 2 for all the combination of the different ratios and pre-
treatment, whereas for untreated reactor, biogas production 
started on day 3. Biogas production was not constant for 

Fig. 2   a Daily biogas yield. b 
Cumulative biogas yield for 
different mixing ratio of AS and 
FVW
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any of the combination and kept fluctuated from higher to 
lower; this may be due to the change in the pH, alkalinity, 
and the digester internal environment that influences the 
biogas production. Results demonstrate the effectiveness 
of the microwave pre-treatment, since roughly 75% of the 
hydrolysis and AD were finished in the allotted 20 days 
of HRT. Cumulative biogas yield for untreated FVW was 
recorded as 445.3 NmL/gVS, whereas for 200, 300, 400, 
and 500W, MW-treated FVW biogas yield was recorded as 
472.8, 542.26, 486.5, and 394.84 NmL/gVS, respectively. 
This confirms that microwave pre-treatment enhances the 
digestibility of the feedstock, and maximum increment of 

21.77 % was observed in the biogas yield for 300 W as 
compared to untreated FVW. The maximum biogas yield 
was 542.26 NmL/gVS (equivalent to 283.68 NmL of biom-
ethane) from FVW pre-treated with 300W MW radiation 
for 10 min. Our findings are in accordance with the find-
ings of Ambrose et al. [19]; according to their finding, the 
maximum hydrolysis of FVW was obtained at a microwave 
power of 660 W for a period of 2 min. The methane yield 
obtained by Ambrose et al. was 276 NmL/gVS. The puri-
fication cost of the biogas having higher methane content 
and lower carbon dioxide will also be lesser.

Fig. 3   a Daily biogas yield. b 
Cumulative biogas yield for 
microwave pre-treated AS and 
FVW (25:75)
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3.3 � Composition of the biogas for the different mix 
ratio

Maximizing the methane production is one of the major 
goals for the conversion of the biomass to methane. Biogas 
is mainly composed of methane and carbon dioxide along 
with some trace gases. Figures 4 and 5 show the composi-
tion of the biogas produced during the course of digestion 
for the different mix ratios without pre-treatment and after 
pre-treatment, respectively. As can be seen from the plots, 
the amount of the methane production increases with the 
duration; however, the percentage of carbon dioxide reduces. 
Methane content was lower at first, but it steadily increased 
and stabilized near the end of the AD process. Co-digestion 
of the AS and FVW mix ratio of (25:75) gave higher meth-
ane content 62%; this is mainly because of the positive syn-
ergetic effect of both the co-substrates, which enhanced the 
biomethane yield, whereas other ratio recorded maximum 
methane content of 58% and 54%, respectively. However, for 
microwave pre-treated FVW and AS, the methane content 
was monitored periodically at the interval of 3 days. Results 
suggested that MW treatment could increase the daily meth-
ane production of Co-AD of AS and FVW, and the best 
effect in terms of increasing the daily methane production 
was obtained for MW-treated FVW at 300W. The highest 
methane content of 72% was recorded; this may be attributed 
to the fact that MW pre-treatment enhanced the solubiliza-
tion (%) of the feedstock and reduces the lignin and cellulose 
content of the FVW which is normally present in the skin 
and the seed of the fruits. However, the methane content for 

the other MW treatment lies between 31 and 57%. The meth-
ane content in the digesters increased during the course of 
digestion. Results revealed that the MW treatment enhance 
the methane yield for the co-digestion of AS and FVW. The 
cumulative methane production showed a similar trend as 
those in previous studies [37, 38]. The synergistic effect of 
the co-digestion of AS and FVW could increase methane 
production, while MW pre-treatment enhances production 
of VFA [39]. Habiba et al. [40] assessed co-digestion of AS 
with FVW, in which methane content fluctuated around 60% 
in all of the bioreactors.

3.4 � Methane content for various pre‑treatment

3.4.1 � Evolution of pH, NH4‑N, and VFA on anaerobic 
co‑digestion of FVW and WAS

The pH of the microwave-treated FVW and AS at differ-
ent ratio was found between 7 and 8.2. The increment in 
the pH values is mainly due to degradation of the pro-
tein which is responsible for the release of the ammonia 
into the solution, which contributes to the alkalinity of 
the digester. Effect of the co-digestion on the pH of the 
digester was monitored regularly at an interval of 3 days 
and is as shown in Fig. 6a. During the course of diges-
tion, initially in first 5 days, the pH of all the combination 
ratios decreased drastically; this is due to the conversion 
of the easily biodegradable organic matter into intermedi-
ate product, i.e., VFA which reduces the pH of the reac-
tor. The pH of the MW-treated FVW and AS at optimal 

Fig. 4   a–d Methane content for 
various mix ratios for co-diges-
tion of FVW and AS
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power reached to 4.5, which was the lowest among the 
four different powers (W). After this, the pH started ris-
ing and attained a final value of 7.5–8.0. The concentrate 
ions of NH4-N in the four groups gradually increased and 
reached 1700.33–1896.35 mg/L at the end of the reaction. 
The MW-AS and FVW group at 300 W had the highest 
value, followed by MW-AS and FVW at 200 W. The con-
trol had the lowest value. Significantly, MW pre-treatment 
of FVW is more beneficial, as it releases ammonia nitro-
gen and increases the degradation of protein in the pro-
cess of co-digestion of AS and FVW [41]. The ammonia 
nitrogen concentration of the MW-treated FVW group 
was higher than that of the untreated FVW group, which 
may be related to the low protein content in the FVW. 

The changes in the total VFAs for the all the mix ratios 
are depicted in Fig. 6b. The variation of the VFA for all 
the MW-pre-treatment ratios showed a first increasing and 
then decreasing trend. This result was similar to previous 
studies [38, 42, 43]. The total VFA reached the maximum 
on the 6th day (from 10 to 13.5 g/L) with that of the group 
MW–FVW and AS at the ratio of 25:75 at the power of 
300 W being the highest and that of the control being 
the lowest and then began to decrease. The VFA contents 
corresponded to changes in pH, and results suggested that 
MW pre-treatment of AS and FVW is beneficial to the 
production of VFAs and can maximize the biogas yield. 
The TVFA was measured in terms of acetic acid as per the 
method described by Chatterjee et al. [29].

Fig. 5   a–e Composition of 
biogas for microwave-pretreated 
FVW and AS

c)  Microwave pre-treatment@ 300 Wa� d) Microwave pre-treatment@ 400 Wa�

e) For microwave pre-treatment@ 500 watt
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4 � Kinetic study

Kinetic modelling is the most suitable tool for industrial 
anaerobic reactor design. It makes it possible to compre-
hend the design, operation, and conversion of anaero-
bic reactors [44]. Kinetic modelling can be utilized to 
optimize the plant-based outcomes of pilot studies and 
to predict and control the performance of the anaerobic 
digesters [45]. Kinetics provide an in-depth idea of reac-
tion rate explaining how a microbial community turns 
the organic matter present in the substrate into biogas 
[46]. Kinetics can be fragmented into four phases, 
namely, lag phase, the log phase, the stationary phase, 
and the death phase [45]. Various kinetic models have 
been used to study the anaerobic digestion (AD) process. 
In this study, two of them have been used, namely, the 

first-order model and modified Gompertz model (MGM 
model). MGM model is based on the assumption that 
biogas increases to its peak exponentially, whereas the 
first-order model is based on assumption that biogas 
increased to its peak linearly [35]. The validity of the 
models was determined using (R2) value. The first-order 
model is given by Eq. (2), and the MGM model is given 
by Eq. (3).

First-order model

Modified Gompertz model

(2)Y(t) = Y0( 1 − exp (−k.t))

(3)Y(t) = Y0exp

{{

− exp
[

R
m
.e

Y0

(� − t)

]

+ 1}

Fig. 6   a Variation of the pH. 
b TVFA for various MW pre-
treatment for co-digestion of 
AS:FVW (25:75)
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where:
Y(t) = cumulative biogas at digestion time t days (mL/g VS)
Y0 = ultimate biogas production potential (mL/g VS)
k = first-order rate constant for biogas appearance (1/day)
Rm = maximum biogas production rate (mL/g VS·day)
λ = lag phase period or minimum time to produce biogas 

(days)
t = cumulative time for biogas production (days)
e = mathematical constant (2.718)
Out of the above constants and variables, all values are 

known except first-order rate constant k which is calcu-
lated by transforming Eq. (2) in form of Eq. (4).

Plot between ln (Yt−Y0)

Y0
 and time t gives the value of k.

The experimental value of cumulative biogas at the end is 
taken as Y0. The experimental cumulative biogas yield accord-
ing to first-order model and modified Gompertz model are as 
depicted in Fig. 7a and b. Graphs illustrate that the result are 
best fitted to first-order model as compared with the modified 
Gompertz model. The biogas production started immediately; 
therefore, no lag phase (λ) was noticed during our experiment, 
which is due to the high biodegradability of the FVW. Also, 

(4)ln
(Yt − Y0)

Y0
= kt

Fig. 7   Kinetic model a for 
untreated AS:FVW (25:75) and 
b for MW-treated AS:FVW
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MW treatment enhanced the solubilization of the waste which 
resulted in immediate biogas production. The value of Rm for 
untreated FVW, 25:75, 50:50, and 75:25 ratio was found to be 
17.2 ml/g VS on day 15, 38.2 ml/g VS on day 3, 29.5 ml/g VS 
on day 3, and 21.5 on day 14. On the other hand, the value of 
Rm for microwave-treated FVW was found as 38.2 ml/g VS, 
40.2 ml/g VS, 44.6 ml/g VS, 36.45 ml/g VS, and 32.25 ml/g 
VS for 0, 200, 300, 400, and 500 Watt, respectively. First-order 
rate constant for FVW was noticed as 0.1085 for FVW (25:75) 
ratio and 0.111 for MW-treated FVW at 300W.

The summary of the results obtained in the present study 
is presented in Table 2.

5 � Conclusions

MW pre-treatment enhanced the daily and cumulative biogas 
yield as well as the methane production for co-digestion of 
FVW and AS. This also improved the digesters’ stability 
by raising the buffering capacity of the digester. AS:FVW 
(25:75) with MW pre-treatment at the power of 300 W had the 
highest nutrient dissolution and methane production by 10%. 
Moreover, MW pre-treatment increased the VS reduction rates 
of co-digestion matrix of AS:FVW (25:75) from 65 to 77%. 
In this experiment, co-digestion and MW pre-treatment made 
hydrolysis no longer a limiting step for AD, and methanogen-
esis became the new limiting step, which indicated that MW 
pre-treatment is beneficial to improve AD performance. All 
experimental results fit well to the first-order model as com-
pared to the modified Gompertz model.
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