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Machine Learning (ML) is growing in popularity and is applied in numerous fields to solve complex
problems. Opportunistic Networks are a type of Ad-hoc Network where a contemporaneous path does
not always exist. So, forwarding methods that assume the availability of contemporaneous paths does
not work. ML techniques are applied to resolve the fundamental problems in Opportunistic Networks,
including contact probability, link prediction, making a forwarding decision, friendship strength, and
dynamic topology. The paper summarizes different ML techniques applied in Opportunistic Networks
with their benefits, research challenges, and future opportunities. The study provides insight into the
Opportunistic Networks with ML and motivates the researcher to apply ML techniques to overcome

various challenges in Opportunistic Networks.

1. Introduction

Opportunistic Networks are a type of sparse Ad-hoc Net-
works, and because of that, the contemporaneous path be-
tween source and destination does not always exist. So, there
is an inherent delay in delivering messages to destination
[22] [119] [80]. In this type of network, message transmis-
sion between source and destination is accomplished oppor-
tunistically when nodes encounter each other. The messages
are transferred in a store-carry-forward fashion, and multiple
copies of a message are spread in the network to improve
delivery chances and reduce delay [47]. Example applica-
tions that can tolerate long delays and lower message de-
livery probability are space communication, wildlife moni-
toring, vehicular networks, and many more [22] [119] [47].
Because of the dynamic and complex nature of Opportunis-
tic Networks, the traditional routing protocols of the Oppor-
tunistic Networks can be improved using ML techniques.

ML techniques are applied in many fields to solve com-
plex problems. ML allows the model to learn decision-making
from data without using pre-defined rules. ML techniques
fall mainly into three categories: Supervised, Unsupervised,
and Reinforcement Learning. These techniques can be used
in the field of Opportunistic Networks to leverage their po-
tential [189], [65] [141] [165].

This paper gives a comprehensive survey of advances
made by ML in the field of Opportunistic Networks. A con-
cise survey of MANETs and VANETS routing protocols that
use ML is presented to depict ML techniques’ progression in
Ad-hoc Networks. Then, the paper focuses on techniques to
optimize the performance of Opportunistic Networks using
Supervised Learning, Unsupervised Learning, Reinforcement
Learning, Neural Networks, and Fuzzy Logic. The focus
is ML techniques for link prediction between neighbouring
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nodes, buffer occupancy, node mobility statistics, congestion
control, contact probability, node energy, friendship strength
amongst nodes, selfish nodes, overhead, and resource man-
agement. In the literature, ML techniques like Naive Bayes,
Artificial Neural Networks, Recurrent Neural Networks, De-
cision Trees, Q-learning, Fuzzy Logic, and Trajectory Data
Mining are used to improve Ad-hoc Networks performance
in general and Opportunistic Networks in particular.

The contributions of this paper are as follows: Section
2 discusses existing review and survey articles for the topic
and highlights the article’s usefulness. Section 3 presents
the ML-based routing protocols for Ad-hoc Networks. Sec-
tion 4 discusses the recent advances of ML techniques in
the field of Opportunistic Networks. Section 5 analyses the
feasibility of ML integration in Opportunistic Networks in
real-world. Section 6 identifies the research challenges and
future directions. Finally, Section 7 gives the concluding
observations.

2. Related Work

The motivation for this survey comes precisely from the
observation that selecting an appropriate ML approach is a
challenging task to enhance the performance of networks.
The existing surveys in Adhoc and Opportunistic Networks
focus mainly on mobility models, routing protocols, simu-
lation tools, and challenges. To choose the ML approach
precisely, researchers require a large-scale survey of existing
ML-based protocols deployed with diverse network scenar-
ios. This paper aims to survey the ML approaches in Adhoc
and Opportunistic Networks comprehensively. We identify
the gaps in the present state-of-the-art and propose possi-
ble future directions. Consequently, this survey will assist
researchers in conceiving a well-performing, reliable, real-
istic, and scalable ML-based opportunistic communication
framework.

There exist various relevant and detailed surveys on Op-
portunistic Networks in the literature. In papers [120, 30],
the authors survey routing protocols, mobility models, and
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Table 1

Comparison with existing survey papers in the area of Opportunistic Networks

Points covered in existing survey

[20] [30]

Our

[120] Contribution

[153] [169] [179] [198]

ML based MANET and VANET Routing Protocols

Details of Mobility Models and Dataset used in Experiments

4 4 v v

Incorporation of ML Techniques with Opportunistic Networks

Overview of Simulation Tools and Experiment Setup

v v v v v

Category wise Survey of ML techniques in Opportunistic Networks

Research Challenges and Future Directions

NN SN NS

v v v v v

simulation tools available for Opportunistic Networks. In
paper [20], the authors have assembled the impacts of mo-
bility on routing protocols from the literature. In papers
[198, 153], the authors survey how social networking con-
cepts are applied in Opportunistic Networks in the literature.
In paper [169, 179], researchers mainly focus on vehicular
networks. The existing surveys help to answer a few ques-
tions, such as, "How a node density, traffic pattern, and other
network parameters affect networks’ performance?", "Which
simulation tool is better for a given scenario?", "How to get
mobility models and real traces?", "What is the impact of
social behaviour on the performance of the network?" and
"Which routing protocol is suitable for the given scenario?".

Our survey goes beyond a traditional survey that merely
describes and compares available approaches. For this rea-
son, this survey provides several significant guidelines for
both students and researchers desiring to explore Opportunis-
tic Networks with ML. In presenting these explanations, our
survey provides a workflow to apply ML for opportunistic
communication. Also, it presents a detailed description of
the related paper with its concepts, models, simulators, func-
tionalities, and advantages. The authors have also made the
comparative analysis in tabular form to explain existing ML-
based routing protocols briefly.

3. ML-based Routing Protocols for Ad-hoc
Networks

This section presents a brief survey of ML-based routing
protocols for Ad-hoc Networks, specifically MANETs, and
VANETs. The section does not contain an exhaustive sur-
vey but incorporates essential contributions to the field. The
purpose of introducing the section is to create a background
for ML techniques used in the broader area of Ad-hoc Net-
works.

3.1. ML-based Routing Protocols for MANETS
Mobile Ad-hoc Networks (MANETS) aim at leveraging
connection opportunities between mobile devices without
using any infrastructure support. In MANETS, the exchange
of messages between source and destination happens via mul-
tiple hops due to the short transmission range of mobile de-
vices. Unlike Opportunistic Networks, in MANETS, it is as-
sumed that a contemporaneous path between source and des-
tination always exists. Due to dynamic topology, node fail-
ures, limited bandwidth, and resource constraints, the link

or route between nodes may become unavailable and end in
transmission failure. So, finding reliable and efficient routes
in MANETS is a challenge. The traditional routing protocols
used in MANETSs can be improved by applying ML tech-
niques to overcome these challenges. In this section, we
discuss the evolution of ML in MANETs. It will help re-
searchers to select a suitable ML approach depending on the
specific scenario.

3.1.1. Supervised Learning-based protocols in
MANET

We have studied MANET routing protocols that employ
supervised learning techniques. These algorithms are trained
using labelled datasets, enabling them to make informed rout-
ing decisions. These protocols aim to enhance network effi-
ciency and reliability by leveraging supervised learning.

ORuML [34]: The paper proposes ORuML, a novel rout-
ing algorithm for wireless networks that utilises ML tech-
niques. Traditional routing protocols like AODV and DSR
have been widely studied in MANETSs, but ORuML intro-
duces a fresh approach by integrating ML with routing de-
cisions. Previous research has explored ML in networking
for intrusion detection and traffic classification tasks. How-
ever, ORuML stands out for its focus on classifying net-
work nodes based on characteristics like battery power and
available storage, using algorithms like K-nearest neighbour
(KNN), Support Vector Machine (SVM), and Multinomial
Logistic Regression (MLR). This paper’s contribution lies
in the comparative analysis of these algorithms for network
node classification and the integration of ML into routing
for efficient message delivery. Challenges remain in scaling
ML-based routing to more extensive networks and optimis-
ing performance under varying conditions.

SVM-BBC [148]: The paper introduces Supervised Vec-
tor Machine with BrownBoost Classification (SVM-BBC)
to enhance data delivery efficiency in Mobile Ad-hoc Net-
works (MANETS). Existing research emphasises energy-
efficient routing methods but needs more awareness during
data delivery. The SVM-BBC method addresses this gap by
employing supervised SVM to identify neighbouring nodes
based on link quality and energy consumption, subsequently
utilising the Enhanced BrownBoost classifier for efficient
data transmission. The novelty lies in combining these mod-
els to achieve significant data delivery improvements while
minimising energy consumption. The proposed method is
validated through theoretical analysis and experimental re-
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sults, demonstrating notable enhancements in data delivery
rate, time, and energy consumption compared to conven-
tional approaches.

3.1.2. Reinforcement Learning-based Protocols in
MANET

We have explored routing protocols in MANETS that utilise
reinforcement learning algorithms. These protocols dynam-
ically adjust routes based on network conditions, improv-
ing adaptability and efficiency. By leveraging reinforcement
learning, these protocols aim to enhance the robustness of
MANET routing in dynamic environments.

DRQ-Routing [97]: The paper proposes the DRQ Rout-
ing protocol that learns the optimal routing policy that sus-
tains network congestion and gives better packet delivery
time. DRQ applies dual reinforcement learning to learn the
routing policy much faster than Q-routing [108]. The DRQ
protocol learns to make forwarding decisions by forward and
backward exploration. The forward exploration is similar
to Q-routing, where a node gets the information from the
neighboring node when sending packets. In contrast, back-
ward exploration utilizes the information collected while re-
ceiving the packets from the neighboring nodes. The back-
ward exploration makes adaption more accurate because ad-
ditional network exploration helps protocol in learning. DRQ-
routing learns the optimal routing policy twice as fast as the
Q-routing protocol. Also, the routing policies learned by
DRQ-routing are better than the Q-routing regarding the av-
erage packet delivery ratio in the higher network load sce-
nario.

Q-MAP [177]: Multicasting plays a vital role in wireless
Ad-hoc Networks. The paper proposes the Q-MAP mul-
ticast routing protocol based on multi-agent reinforcement
learning to construct an on-demand multicast route. Re-
inforcement learning improves the network’s performance
after each task according to the reward received from the
environment. The protocol also helps in resource reserva-
tion by optimal use of resources while sending messages be-
tween source and destination. The Q-MAP uses a Join Query
Packet (JQP) comprising network and packet information.
The primary purpose of sending a JQP packet between the
source and destination is to find the optimal path while up-
dating the reward in Q-learning. The Q-MAP protocol is not
based on centralized control and gives minimum latency by
parallel computation using multi-agent reinforcement learn-
ing.

Q-Routing [32]: The paper aims to exploit the interplay
between mobility and routing. Based on reinforcement learn-
ing, the proposed Q-routing protocol continuously adapts to
link failure and congestion by selecting the optimal route
with the least delivery time. Q-routing learns to avoid the
congested path and chooses the alternate path. The prime
aim of the proposed approach is to achieve the maximum de-
livery ratio possible using Q-table maintained at each node
by the Q-learning algorithm. The authors evaluate Q-routing

protocol with the directional routing protocol, and the re-
sult shows that reinforcement learning can effectively handle
node mobility and make good packet routing decisions.

WARP [147]: The authors proposed the Wireless Adap-
tive Routing Protocol, Version 5 (Warp-5), to make a more
reliable message-forwarding decision in heterogeneous net-
works using a new metric. The metric includes the effects of
heavy network traffic and environmental noise. The WARP-
5 protocol presents the cross-layer predictor to select the route
in networks by calculating the statistical estimate based on
recent experience. The approach uses the route request and
replies packet to explore the route rapidly compared to ran-
dom exploration. For validating the proposed protocol in
a dynamic and unpredictable environment, the simulation
includes noise and congestion in the network. The simu-
lation results show that the WARP-5 protocol constructs a
better route than existing shortest-path routing protocols or
Q-Routing protocols in Wireless Ad-hoc Networks.

RL [66]: The paper proposed a reinforcement learning-
based routing protocol compatible with the network changes
due to the high mobility of nodes. The proposed algorithm
finds the shortest path by taking the message transmission
decision based on the link stability between the nodes us-
ing Q-learning. Q-learning aims to select the best suitable
neighbour node at any specific time to deliver the message
to the destination node. The Q-learning learns the pattern
of node mobility and estimates the values of forwarding ac-
tion that helps to choose the suitable node based on a higher
Q-value. The simulation result shows that the reinforcement
learning protocol performs better than conventional MANET
protocols.

3.1.3. Neural Network and Fuzzy Logic-based
protocols in MANET

We have examined MANET routing protocols that lever-
age neural networks and fuzzy logic controllers. These pro-
tocols aim to optimise routing paths and improve delivery ra-
tios by employing advanced decision-making mechanisms.
By combining neural networks and fuzzy logic, these proto-
cols enhance the effectiveness of routing in MANETS.

FMRM [134]: The authors proposed the fuzzy control-
based multipath routing algorithm-FMRM in MANET. Mul-
tipath routing finds multiple paths between source and desti-
nation but is challenging for dynamic topology. The FMRM
uses fuzzy controllers to reduce route reconstruction and ef-
fectively select multiple paths. The prime goal of the FMRM
algorithm is to develop the fuzzy controller that helps to de-
crease the number of route reconstructions in the MANET.
The fuzzy controller explores the implicit and explicit rela-
tionships between the nodes and the Ad-hoc environment to
develop the fuzzy control rule, which helps decision-making.
The FMRM algorithm efficiently selects the multiple paths,
which increases the packet delivery ratio and decreases the
end-to-end delay. The simulation carried out in NS-2 [60]
with high load conditions shows the effectiveness of FMRM

performance under various network scenarios with rapid changes protocol in multipath routing.

in network topology. The authors compared the Q-routing

QURA [200]: The authors proposed the ML-based rout-
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ing protocol named QURA for the Next-generation Wireless
Networks (NWNs). The protocol uses principal component
analysis (PCA) for parameter reduction and then the Neu-
ral Network to make an intelligent routing decision. The
ML-based routing protocol predicts the Queue Utilization
of the next time slot to choose the node with more resources
to carry the packet using the neural network. The perfor-
mance of the proposed QURA protocol is compared with the
shortest path algorithm and Queue Utilization Bellman-Ford
(QUBF) protocol [75]. The result shows that the QURA
protocol enhances the network’s performance in terms of
throughput, delay, and packet loss ratio.

3.1.4. Unsupervised Learning-based protocols in
MANET

We have analysed the MANET routing protocol that utilises

unsupervised learning techniques. These algorithms detect
patterns and structures within the network, enhancing scal-
ability and adaptability in dynamic environments. By lever-
aging unsupervised learning, these protocols aim to improve
the efficiency and robustness of MANET routing.

HCRP-HD [115]: In this paper, the Hybrid Clustering
Routing Protocol (HCRP-HD) is proposed to detect the holes
in the network. The HCRP-HD consists of two phases: hole
detection and packet routing. The detection process tries
to generate a connected graph to improve the network life-
time by incorporating graph metrics and a soft clustering
algorithm. The network parameters such as node degree,
closeness and betweenness centrality, page rank, and local
cluster coefficient are used in the clustering process. The
hole detection improves the network lifetime, which helps in
packet routing via connected graphs. The HCRP-HD proto-
col is compared with three different protocols, namely THD
[62], BDP [202], and LEACH-T [8]. The simulation result
shows that HCRP-HD increases hole detection accuracy up
to 98% and eliminates the network disconnectivity of more
than 80% of the network lifetime.

3.1.5. Comparative Analysis of ML Techniques in
MANETs

Summary of ML-based Protocols for MANETS: The ex-
isting ML techniques used in Ad-hoc Networks’ routing pro-
tocols can mainly be categorized into reinforcement learn-
ing, neural networks, and clustering methods. The main ob-
jectives of using ML techniques in MANETS are: Choose the
optimal path, predict the vehicle’s location, reduce conges-
tion and transmission delay, and increase delivery probabil-
ity. Table 2 shows a comparative analysis of the ML-based
routing protocols in MANETS. It also summarizes the com-
monly used datasets, simulation tools, and competing exist-
ing routing protocols.

3.2. ML-based Routing Protocols for VANETs
There is a growing interest in Vehicular Ad hoc Net-
works (VANETS) because of their potential usage in applica-
tions like road safety, driver assistance, autonomous driving,
entertainment service, traffic monitoring, roadside business
advertisement, and many more. Researchers are fascinated

by VANETS due to their challenging characteristics, such as
highly dynamic vehicle mobility, varying speeds, and vary-
ing vehicle density. So, designing protocols to provide effi-
cient and reliable delivery, which is a minimum QoS require-
ment for VANET applications, is quite challenging. Over
the years, many routing protocols have been proposed for
VANETSs. However, most protocols are designed for a spe-
cific environment/scenario or work under specific assump-
tions like the availability of location information. ML tech-
niques can help protocols learn to adapt to changing envi-
ronments, and application needs better than traditional pro-
tocols. In this section, we discuss the evolution of ML in
VANETs.

3.2.1. Supervised Learning-based protocols in VANET

We have analysed VANET routing protocols utilising su-
pervised learning techniques, where algorithms are trained
with labelled data to make informed routing decisions, en-
hancing reliability and efficiency in vehicular communica-
tion.

GMLR [207]: For efficient communication in VANETS,
the paper proposes a greedy forwarding algorithm named
Greedy Machine Learning Routing (GLMR). It is based on
Support Vector Machine (SVM). The SVM processes the ve-
hicles’ data and generates a metric to make the routing de-
cision. Unlike most of the routing protocols in VANETS,
GLMR does not depend only on GPS. A neighbor node is
selected as a forwarding node based on the direction of the
node and the distance between the next-hop node and the
forwarding node. The simulation results show that GLMR
reduces the delay and packet loss in VANETS compared to
GPSR protocol [87].

V2I [150]: The paper proposes a novel approach to en-
hance Vehicle-to-Infrastructure (V2I) communication in Ve-
hicular Ad hoc Networks (VANETS) by integrating ML and
software agent techniques. The proposed model aims to im-
prove the efficiency of intelligent transport systems by pro-
viding safety warnings and reducing collisions. Leverag-
ing ML techniques and software agents addresses the inher-
ent imprecision and uncertainty in VANETSs. The proposed
agent-based model incorporates static and mobile agents and
employs decision tree and Q-Learning algorithms to classify
events and identify destination vehicles. This approach opti-
mises bandwidth utilisation, packet delivery ratio, and end-
to-end delay in V2I communication.

RF, KNN, LR [35]: The authors focuses on evaluating
the performance of ML techniques, including Random For-
est (RF), Logistic Regression (LR), and k-nearest Neighbor
(KNN), in predicting efficient routing protocols based on
feature information extracted from real-time vehicles. The
study addresses the gap in identifying vehicle features by uti-
lizing a novel dataset compiled from NS-2 [60] and SUMO
[95]. By comparing the performance of ML techniques against
traditional routing protocols, the paper highlights the poten-
tial of ML in improving the effectiveness and reliability of
VANETs. Future research directions include exploring the
integration of artificial intelligence (Al) techniques to en-
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Table 2
Comparative Analysis of ML Techniques in MANETSs
Year Protocol Category Functionality Advantages Con‘lt[;ared Dataset Vah_lfiz:)tllon
Backward and .
Learns the optimal .
DRQ- Dual Forward policy faster Different
1997 . Reinforcement exploration of o Q-Routing [108] network Custom
Routing [97] ) . Sustain high .
Learning Q-learning used topologies
network load
to update Q-value
Multi-agent S
Reinforcement reinforcement I\/ll;r:eT(lzzez:ge Multicast Different
2002 Q-MAP [177] . learning algorithms Y Routing Mobility Custom
Learning chooses
used for . Protocols [79] Models
. . optimal path
multicast routing
Remforcgment Able to learn
Learning . Random and
Reinforcement Controls the node the interplay Directional Centroidal
2004 Q-Routing [32] ) o between . Custom
Learning mobility and Routing movement
acket routing movement policy
P L and routing
decisions
Q—_Iearnmg Makes better Additive
dynamically selects . L. .
Reinforcement the route to routing decision white
2011 Warp-5 [147] - ) by avoiding AODV [132] Gaussian NS-2 [60]
Learning cope with . .
. congestion noise
congestion and .
. and noise model
noise in network
Ml g o
Fuzzy o AOMDV [114], Way Point
2012 FMRM [134] Logic Fuzz.y.co.ntroller Whl(.:h increase AODVM [121] mobility NS-2 [60]
to minimize route delivery ratio
. model [21]
reconstruction and reduces delay
It takes the Ident|f|§s the E-Ant-DSR [33], Random
Reinforcement forwarding behavioral DSR [82], Way Point
2016 RL [66] - . pattern of node ant-colony - NS-2 [60]
Learning decision based mobility
link stabilit and reduces based model [21]
y transmission delay routing [67]
Improves network Increases the hole Random
Unsupervised |ifetiFr)'ne by detectin detection accuracy THD [62], Distribution
2019  HCRP-HD [115] Le:min holesyusin & which reduce BDP [202], of nodein  MATLAB [1]
& ; & the network LEACH-T [8] 500 * 500 m
hybrid clustering . -
disconnectivity area
Load balancing
PCA and based routing .
Neural Neural Network protocol using BF and Varlo-us
2019 QURA [200] Network to predict ML to reduce QUBF [75] traffic Custom
patterns
the network packet loss, delay
and throughput
ML-based Identifies the
2020 ORuML [34] Superv.lsed Optl_mlze.d Routing  optimal nelgh'b.ormg Other ML Re.al Custom [1]
Learning in wireless node for efficient techniques Experiment
networks routing
SVM s used High data Network
Supervised to classify delivery and CTCP [17], topology
2022 SVM-BBC [148] Learning suitable minimal time ELMP [140] (50 to 500 NS-2 [60]
neighbour node consumption nodes)

hance further VANET efficiency and scalability in diverse
VANET scenarios.

3.2.2. Reinforcement Learning-based Protocols in
VANET
We have investigated routing protocols in VANETS lever-
aging reinforcement learning algorithms, dynamically ad-
justing routes based on changing traffic conditions to im-
prove adaptability and efficiency in vehicular networks.
PFQ-AODV [195]: PFQ-AODV uses a fuzzy constraint-

based Q-learning routing algorithm. It is based on a well-
known AODYV [132] (ad-hoc on-demand distance vector) rout-
ing protocol. By using fuzzy logic, the protocol can han-
dle uncertain and imprecise link information and evaluate
whether forwarding a link is good or not without using tra-
ditional mathematical models. Unlike most VANET proto-
cols, it does not use vehicles’ positioning information (GPS
independence) and is independent of lower layers. So, PFQ-
AODV is practical and portable. The protocol considers nodes
mobility, link quality, and bandwidth for route selection. The

s
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authors have tested the protocol on real devices as well.
PbQR [195]: Establishing a reliable multi-hop transmis-
sion in VANETs is challenging. The proposed protocol PbQR

(Position-based Q-Learning Routing) uses reinforcement learn-

ing to evaluate the intermediate nodes’ strength to forward
messages to destinations. The PbQR protocol selects the
best neighbor node for forwarding the message using the
quality of neighbor nodes and the position of the destination
node. Each node periodically sends a hello message con-
taining the node’s position, reward table, and the number of
nodes in the communication range. It also uses the node’s
stability and continuity factor to calculate the reward effec-
tively. Each node updates the reward table upon receiving
hello messages. The PbQR makes forwarding decisions us-
ing the position information of the neighbor and the destina-
tion node. The simulation results show that PbQR effectively
finds the better path in the dynamic topology of VANETS.
Co-operative Approach [188]: Most real-world VANETS
create interconnected networks of multiple vehicles. These
vehicles generate multidimensional heterogeneous overlay
networks, and it is not easy to communicate between them.
This paper proposed the Deep Reinforcement Learning (DRL)
based cooperative method to enable effective communica-
tion between virtual networks through Software Define Net-
working (SDN) controller. The paper’s main contributions
are the framework to enable communication between het-
erogeneous virtual vehicle networks, improving the perfor-
mance of co-existing virtual networks, providing Markov so-
lutions for fast convergence of the cooperative method, and
using the DRL to maximize the total rewards. The simula-
tion results show that the proposed approach improves het-

erogeneous vehicular networks’ latency, loss rate, and through-

put.

3.2.3. Neural Network and Fuzzy Logic-based
protocols in VANET

We have examined VANET routing protocols employ-
ing neural networks and fuzzy logic controllers to optimise
routing decisions and enhance communication reliability in
dynamic vehicular environments.

GABR [203]: It aims to reduce packet loss by solving
the broken link problem between nodes. A genetic algo-
rithm finds the optimal global path between a source and
a destination. The initial population is generated randomly
over a variety of routes. According to the fitness value, it
selects an optimal path to deliver a message to the destina-
tion. In GABR, adjacent vehicles use a greedy store-carry-
forward approach to deliver a message. The experimental re-
sults show the superiority of GABR over CAR (connectivity-
aware routing) and IBR (intersection-based routing) proto-
cols. However, the proposed approach is complex and needs
a faster speed of searching.

CRS-MP [178]: The paper proposes a centralized rout-
ing strategy with vehicle mobility prediction for VANETS,
which uses artificial intelligence-based Software Defined net-
works (SDN). In VANETS, protocols generally use hello mes-
sages to identify/detect neighboring nodes, increasing net-

work congestion. The proposed protocol reduces this com-
munication cost by predicting the vehicle arrival rate using
ANN. It builds a statistical traffic model by estimating traf-
fic mobility, which helps to make efficient routing decisions.
Based on the prediction, the transmission probability and
the average delay can be calculated before the actual time
to make forwarding decisions. The CRS-MP protocol gives
a robust performance in case of frequent changes in vehicle
speeds.

GA based Approach [151]: The protocol is based on the
Mobicast routing protocol. It uses Genetic Algorithm for
quick and real-time response to dynamic changes in topol-
ogy. The fitness is calculated using the minimum average
route cost per the threshold. The approach shows perfor-
mance improvement in the execution time using parallel pro-
cessing. The result shows the improvement over the serial
algorithms to scale up the number of vehicles on the road
and reduces the roadside unit for more extended coverage.

3.2.4. Unsupervised Learning-based protocols in
VANET

We have studied VANET routing protocols utilising un-
supervised learning techniques, autonomously detecting pat-
terns and structures in vehicular networks to enhance scala-
bility and adaptability in dynamic traffic scenarios.

CBDRP [170]: In this paper, the authors proposed a cluster-
based directional routing protocol (CBDRP) for highway sce-
narios. The protocol transmits the message according to the
moving direction of vehicles. The vehicles moving in the
same direction are divided into several clusters. To find the
stable link, the heads of the cluster are selected based on the
direction of the vehicles’ movement. Each head node knows
to which cluster it belongs, and it is responsible for finding
the path to the destination by exchanging location messages
within a cluster. In CBDRP, when intermediate nodes ex-
perience link failure, they follow a store-carry-forward ap-
proach for route repair to provide link stability. The simula-
tion results show that the CBDRP protocol is superior com-
pared to AODV [132] and GPSR [87] in terms of delivery
ratio, latency, and link stability for highway scenarios.

MARS [100]: This paper focused on reducing transmis-
sion delays and improving message transmission stability in
VANET. Due to frequent changes in a link and the high mo-
bility of vehicles, route selection is a difficult task. The pro-
posed protocol uses the k-means clustering technique to pre-
dict the movement of vehicles and choose the appropriate
path with sustainable transmission capacity to forward the
messages. The k-means clustering is used to learn network
information for making forwarding decisions between Road
Side Units (RSU). The MARS provides mainly three evalua-
tions/predictions, which are as follows: First, the prediction
of vehicle movements. Second, the evaluation of transmis-
sion capacity, and finally, the evaluation of forwarding direc-
tion. The simulation performed in NS-2 [60] using different
real datasets shows that the MARS protocol gives better re-
liability and efficiency in data transmission for VANETSs.

CBLTR, IDVR, CORA [3]: The authors have proposed
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three routing protocols in this paper. First, the Cluster-Based
Lifetime Routing (CBLTR) protocol aims to increase through-
put and route stability. The cluster heads are selected based
on the lifetime of a vehicle. Second, Intersection Dynamic
VANET Routing (IDVR) aims at reducing end-to-end delay.
It selects the optimal route by considering current and des-
tination location information and the average throughput of
the Set of Candidate Shortest Routes (SCSR). Finally, the
Control Overhead Reduction Algorithm (CORA) limits the
number of control messages by calculating the optimal pe-
riod for exchanging messages to update clusters. The SUMO
[95] simulator is used for traffic generation, and MATLAB
[1] is used to show the improvement in performance over the
protocols like CBDRP [170], AODV-CV [13], VDLA [206].

Hybrid Clustering Approach [12]: Most VANET appli-
cations require transmitting a message to the desired loca-
tion within a specific period. This paper proposes two soft
computing-based VANET routing protocols to meet the de-
lay constraints. First, a hybrid clustering protocol combines
a context-based and geographical clustering approach. It
helps in reducing the control overhead in the network. Sec-
ond, a destination-aware routing protocol for inter-cluster
routing reduces the end-to-end delay and improves the mes-
sage delivery ratio. It utilizes the current location of a node
and its neighboring nodes to identify the suitable forward-
ing node. The simulation results show that the proposed hy-
brid clustering approach performs better than CBLTR [143],
AODV-CV [13], CBR [111].

3.2.5. Comparative Analysis of ML Techniques in
VANET:s

In summary, ML techniques used by routing protocols
in Ad-hoc Networks can be categorized as follows: Rein-
forcement Learning, Neural Networks, Supervised Learn-
ing, and Unsupervised Learning. The main objectives of
using ML techniques in VANETSs are: to learn the network
behavior, reduce congestion, select an optimal path, reduce
packet loss, and increase delivery probability. Table 3 shows
the comparative analysis of the ML-based routing protocols
in VANETs. It also summarizes the commonly used datasets,
simulation tools, and competing existing routing protocols.

3.3. Rationale for Investigating ML Techniques in
MANETSs and VANETSs

MANETSs and VANETS represent prominent categories
within the domain of mobile networking. These networks
are characterised by their dynamic topology, limited infras-
tructure, and decentralised nature. It presents distinctive chal-
lenges for routing and communication. Over the years, re-
searchers have extensively explored ML techniques to ad-

dress these challenges and enhance the performance of MANETS

and VANETs. ML techniques in MANETs and VANETS
are discussed in our comprehensive survey on Opportunistic
Networks for several reasons:

3.3.1. Common Challenges and Solutions

MANETs, VANETs, and Opportunistic Networks have
common challenges such as intermittent connectivity, node
mobility, limited bandwidth, and energy constraints. ML
techniques have been applied in MANETSs and VANETS to
optimise the performance of routing protocols, predict link
quality, and adapt network configurations. By reviewing the
literature on ML techniques in MANETs and VANETS, we
gain insights into solutions that can be adapted and extended
to address similar challenges in Opportunistic Networks.

3.3.2. Technological Evolution
The evolution of ML techniques in MANETSs and VANETS

reflects the iterative process of refining algorithms and mod-
els to serve the specific requirements of mobile and dynamic
network environments. Early research focused on basic rout-
ing and localisation tasks. At the same time, recent advance-
ments have examined sophisticated ML-based approaches
for traffic prediction and adaptive routing. By examining the
trajectory of ML research in MANETSs and VANETS, we can
anticipate emerging trends and innovations that may influ-
ence the development of Opportunistic Networks.

3.3.3. Cross-Domain Applications

ML techniques developed for MANETs and VANETS
demonstrate potential for cross-domain application in Op-
portunistic Networks. For instance, ML-based routing pro-
tocols designed for network conditions in MANETS can be
adapted to exploit opportunistic encounters and information
dissemination in Opportunistic Networks. Similarly, anomaly
detection algorithms for VANETS can be utilised to iden-
tify suspicious behaviours and malicious activities in oppor-
tunistic communication scenarios. By exploring literature
across different mobile networking domains, we can lever-
age prior research to accelerate innovation and address com-
mon challenges in Opportunistic Networks.

3.3.4. Comprehensive Perspective

We aim to provide researchers with a comprehensive un-
derstanding of ML techniques in mobile networking, encom-
passing diverse applications and contexts. By including lit-
erature reviews on MANETSs and VANETS, we offer a holis-
tic viewpoint emphasising the connection of research efforts
across related domains. This approach enhances the depth
of our survey and encourages knowledge transfer and cross-
pollination of opinions among researchers working in differ-
ent areas of mobile networking.

In summary, including literature reviews on ML tech-
niques in MANETSs and VANETS in our survey on Oppor-
tunistic Networks bridges the gap between different mobile
networking domains. We aim to facilitate the development
of innovative solutions that address the growing needs of
communication environments.
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Table 3
Comparative Analysis of ML Techniques in VANETs
Year Protocol Category Functionality Advantages Comt;:,ared Dataset Val_lrtiaotllon
Cluster head Finds the
. selects another stable link of .
2010  CBDRP [170] Unsuper.wsed head based on transmission AODV [132], nghwz?y NS-2 [60]
Learning the direction for rapid and GPSR [87] Scenario
of the vehicle reliable communication
Reinforcement Flfzzy Doesn't required Freeway
PFQ- Learning constraint-based vehicles position scenarios
2013 AODV [195] Fuzzy al %_rli(::::lzied to for route AODV [132], Street NS-2 [60]
Logic %or routing selection scenarios
ML Chooses the
. techniques path with
Unsupervised . CLWPR [88], Open
2014 MARS [100] Learning u.sed to sustau?at.)le STAR [31] Street Map [95] NS-2 [60]
predict vehicle transmission
movement capacity
SVMis used Reduces the .
Support to process the ket | nd Floating
2016 GMLR [207] Vector vehicle data pac del osisna GPSR [87] Car Data NS-2 [60]
Machine which helps elay (Beijing)
. . a network
in routing
Cluster-based I:hcrrsasis tte Grid
CBLTR, Uncubervieed | TOUtINg protocol el CBDRP [170], oo SUMO [95]
2017 IDVR, y per is used to ol Y AODV-CV [13], H_ph 8y, and
CORA [3] earning select the reduce daelay VDLA [206] 'ghway Matlab [1]
optimal path and control Scenario
P overhead
Hybrid clustering .
Hybrid Soft combines the w'\i:ﬁissacg:rtc:?r:v;ze CBCLR [143], Uniform NS-2 [60]
2018 Clustering Computin context-based limit. reduces AODV-CV [13], distribution SUMO [95]
Approach [12] puting and geographic imit, recu CBR [111] of nodes
approach end-to-end delay
GA used to
find optimized Better Urban
Genetic global path transmission
2018 GABR [203] Alsorithm which also delay and CAR [10] road Custom
g o Y scenario
satisfies QoS loss rate
requirements
Uses ANN to
Artificial predict the vehicles Reduce§ tr.e Vehicle to Poi
2019  CRS-MP [178] Neural arrival rate and communication Vehicle and otsson NS-2 [60]
. cost and reduce Process [131]
Network make efficient ) Infrastructure [37]
decision network congestion
Uses the quality
of neighbor nodes Finds better Manhattan
Reinforcement and position forwarding nodes GPSR [87], o
2019 PbQR [195] Learning of destination by calculating AODV [132] MNCI’::;:IY NS-2
node to rewards
find a route
Uses DRL Imbroves Coalitional
Coonerative Deep to improves Ios: rate Routing [40], Waxman—
2019 p Reinforcement the cooperation ' Throughput Salama Custom
Approach [188] . throughput and .
Learning between the latenc Optimal model [193]
virtual networks ¥ Routing [123]
Genetic Gives high
algorithm reliability and
2019 GA based Genetic based modified quick real GPSR [87] Street OpenMP [44],
pproach [151 gorithm mobicast routing time response to 10 cenarios 152
A h Algorith bi i i CAR S i CUDA
used to gain frequent topology
more accuracy changes
.ML—l:?ased Avoid vehicle
Supervised intelligent collision and
2021 V21 [150] pervi transport system . C-Vv2i City Scenario Custom
Learning gives safety
to learn warnin
automatically &
Extracting
RF, KNN Supervised features of safe, secure, M!‘ Read-world NS-2 [60],
2023 LR [35] Learni hicul twork and reliable Techniques road SUMO [05]
earning vehicuiar networks VANET routing [10] environment

using ML
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3.4. Analysing Differences among MANETS,
VANETS, and Opportunistic Networks

MANETs, VANETS, and Opportunistic Networks rep-
resent distinct paradigms within the domain of mobile net-
working, each characterised by unique challenges and appli-
cations. We have analysed fundamental differences among
these network types, mainly focusing on routing, energy con-
sumption, latency, and the applicability of ML techniques.
3.4.1. Routing Dynamics

MANETs: operate in infrastructure-less environments where

nodes rely on ad hoc routing protocols for communication.
These protocols, such as AODV and DSR, facilitate dynamic
route discovery and maintenance, which is suitable for sce-
narios with frequent topology changes. In contrast, VANETSs
incorporate vehicular communication with roadside infras-
tructure, leading to hybrid routing approaches. Vehicle-to-
Vehicle and Vehicle-to-Infrastructure communication proto-
cols enable efficient dissemination of safety messages and
traffic information, incorporating ad hoc and infrastructure-
based routing. Opportunistic Networks leverage intermittent
connections and mobility patterns for message dissemina-
tion. Traditional end-to-end routing is impractical due to the
lack of continuous paths. Instead, store-carry-and-forward
or epidemic routing strategies exploit sporadic encounters
for message forwarding.

3.4.2. Energy Consumption Patterns

Energy conservation is essential in MANETS, where mo-
bile devices operate on limited battery resources. Energy-
efficient routing protocols, sleep scheduling mechanisms, and
adaptive transmission power control are adopted to prolong
the network lifetime. Vehicles in VANETS possess varying
energy capacities and require energy-aware routing strate-
gies. Cooperative relaying and dynamic power management
techniques optimise energy consumption while meeting com-
munication requirements. Energy consumption in Oppor-
tunistic Networks varies with device mobility and communi-
cation opportunities. Message replication and context-aware
techniques balance energy efficiency with message delivery
probability in resource-constrained environments.

3.4.3. Latency Characteristics

The latency in MANETs: arises due to the nature of topol-
ogy changes and the route discovery mechanisms utilised
within the network. Proactive caching and route optimisa-
tion techniques mitigate latency and improve end-to-end com-
munication performance. VANETSs impose uncompromis-
ing latency requirements, particularly for safety-critical ap-
plications such as collision avoidance. Prioritisation of safety
messages, efficient dissemination protocols, and predictive
modelling of vehicle movements contribute to reducing la-
tency in VANETSs. Latency in Opportunistic Networks is in-
herently higher due to intermittent connectivity and the re-
liance on store-carry-and-forward routing. ML techniques
are leveraged to predict encounter probabilities and optimise
message forwarding to minimise latency.

3.4.4. Applicability of ML Techniques to Opportunistic
Networks
In light of the distinct characteristics, evaluating the trans-

ferability of ML techniques developed for MANETSs and VANETS

to Opportunistic Networks is essential. The several consid-
erations demonstrate the potential applicability of ML in en-
hancing routing, energy consumption, latency, and other per-
formance metrics in Opportunistic Networks. ML models
trained on historical routing data from MANETSs and VANETSs
can make informed opportunistic routing decisions in dy-
namic and intermittently connected environments. ML-based
energy availability and consumption pattern predictions fa-
cilitate energy-efficient message-forwarding strategies in Op-
portunistic Networks. The predictive modelling of encounter
probabilities and mobility patterns using ML techniques en-
ables proactive message scheduling and transmission to min-
imise latency in Opportunistic Networks. ML techniques
dynamically allocate resources based on network conditions
and application requirements, optimising performance in Op-
portunistic Networks.

Itis crucial to understand the differences among MANETs,
VANETs, and Opportunistic Networks for effective commu-
nication strategies and deploying appropriate ML-based so-
lutions. We provided the groundwork for identifying ML
techniques to enhance performance in Opportunistic Net-
works.

3.5. Comparative Study of ML Techniques in
MANETSs, VANETs and Opportunistic
Networks

In this section, we conduct a comprehensive comparative
analysis of ML techniques employed in MANETSs, VANETS
and Opportunistic Networks. By examining ML applica-
tions’ common and unique characteristics in these network
types, we aim to identify the similarities, differences, and
potential in leveraging ML techniques.

3.5.1. Simple Improvisations of ML Techniques

We have examined ML techniques commonly utilized in
MANETs and VANETS, which are adapted and refined in
Opportunistic Networks.

Supervised learning techniques have been widely utilised
in MANETs and VANETS: for tasks such as link quality pre-
diction, traffic classification, and routing optimisation. In
MANETs, supervised learning models are trained on labelled
data to predict link quality metrics such as packet loss or
delay, enabling nodes to select more reliable paths for data
transmission. Similarly, in VANETS, supervised learning
algorithms may classify network traffic into different cate-
gories (e.g., safety messages and entertainment data) to pri-
oritise message dissemination based on application require-
ments. In Opportunistic Networks, supervised learning tech-
niques are often adapted for predicting encounter probabil-
ities between nodes. By analysing historical data of node
movements and communication patterns, supervised learn-
ing models can estimate future encounters’ likelihood, guid-
ing message-forwarding decisions. For example, logistic re-
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gression or support vector machines trained on features such
as node mobility patterns, communication frequency, and
social interactions to predict the probability of encounters
between pairs of nodes.

Unsupervised learning algorithms such as clustering and
anomaly detection are used in MANETs and VANETs for
network monitoring, topology discovery, and anomaly de-
tection. In MANETS, clustering algorithms group nodes with
similar connectivity patterns to facilitate efficient routing and
resource allocation. Anomaly detection techniques identify

abnormal behaviour or network events, such as sudden changes

in traffic patterns or the presence of malicious nodes. In
Opportunistic Networks, unsupervised learning methods are
utilised for community detection and dynamic clustering of
nodes based on proximity or social behaviour. These tech-
niques dynamically enable nodes to form clusters or com-
munities, fostering localised communication and enhancing
message delivery probability. For instance, hierarchical clus-
tering algorithms may be employed to partition nodes into
communities based on their spatial and social proximity, en-
abling efficient message forwarding within each community.

3.5.2. Unique ML Techniques in Opportunistic
Networks

We highlight ML techniques explicitly tailored for Op-
portunistic Networks, emphasizing their distinctiveness and
efficacy in addressing the inherent challenges of intermittent
connectivity and mobility patterns.

Reinforcement learning techniques offer a powerful frame-
work for adaptive decision-making in dynamic and uncertain
environments. While reinforcement learning has been ap-
plied in MANETs and VANET: for tasks such as route op-
timisation and congestion control, its application in Oppor-
tunistic Networks introduces unique challenges and oppor-
tunities. In Opportunistic Networks, reinforcement learn-
ing algorithms enable nodes to learn optimal routing poli-
cies based on feedback from network performance metrics
such as message delivery ratio and delay. Nodes act as au-
tonomous agents that take actions (e.g., forwarding messages
to neighbouring nodes) to maximise cumulative rewards over
time. By learning from past experiences and interactions,
nodes adapt their routing strategies to changing network con-
ditions and mobility patterns, improving message delivery
probability and network efficiency.

Neural networks offer complex pattern recognition and
decision-making capabilities, making them well-suited for
modelling and optimising communication protocols in mo-
bile networks. In MANETSs and VANETS, neural networks
have been applied for traffic prediction, routing optimisation,
and anomaly detection tasks. In Opportunistic Networks,
neural networks are utilised for various purposes, such as
predicting encounter probabilities between nodes, optimis-
ing message dissemination strategies, and learning node pref-
erences for message forwarding based on past interactions.
For example, Recurrent Neural Networks (RNNs) may be
employed to model temporal dependencies in node mobility
patterns, enabling accurate prediction of encounter opportu-

nities between pairs of nodes.

Fuzzy logic provides a flexible framework for reasoning
under uncertainty, which is particularly relevant in Oppor-
tunistic Networks where connectivity and encounter oppor-
tunities are inherently probabilistic. While fuzzy logic is
used in MANETSs and VANETS for tasks such as adaptive
routing and decision-making, its application in Opportunis-
tic Networks introduces novel challenges and opportunities.
In Opportunistic Networks, fuzzy logic is applied for dy-
namic thresholding, adaptive decision-making, and context-
aware routing. For example, fuzzy logic controllers may
adjust message forwarding probabilities based on node mo-
bility, communication history, and encounter probabilities,
ensuring robust and adaptive message dissemination in dy-
namic and intermittently connected environments.

Several ML techniques used in Opportunistic Networks
are simple improvisations of those employed in MANETS
and VANETs. However, unique approaches are also devel-
oped to the specific challenges and opportunities presented
by Opportunistic Networks. By leveraging insights from both
traditional and novel ML techniques, researchers can develop
robust and adaptive communication solutions capable of en-
hancing network performance in intermittently connected en-
vironments.

4. Recent advances of ML techniques in
Opportunistic Networks

This section presents the literature review of the work
done in this field in the past decade. The section also de-
scribes the workflow of a ML-based approach in an Oppor-
tunistic Networks. It is classified into four main categories:
Supervised Learning, Reinforcement Learning, Unsupervised
Learning, Neural Networks, and Fuzzy Logic. The Fig. |
shows the conceptual map of the study that describes algo-
rithms and main tasks performed in each category. The pro-
posed approaches aim to improve performance parameters
like delivery probability, overhead ratio, hop count, and av-
erage latency. The survey will help researchers choose ap-
propriate ML techniques depending on the problem.

4.1. Workflow of Machine Learning in
Opportunistic Networks

ML workflow is categorized into 6 phases: Problem For-
mulation, Data Collection, Feature Extraction, Develop Model,
Model Validation, and Deploy Model. The Fig. 2 presents
the incorporation of ML workflow for the Opportunistic Net-
works. The section briefly explains ML phases in terms of
Opportunistic Networks.

Problem Formulation: Recently, ML has been applied
in numerous aspects of Opportunistic Networks to predict
the node’s contact opportunity, node movement, route sta-
bility, and similarity between nodes. The initial step of ML
is to recognise the problem that needs to be solved [130]. It
is the procedure to recognise the network’s attributes, char-
acteristics, behaviour, nodes movement, and node density.
Based on the problem and its functioning domain, diverse
problem-solving approaches, such as classification, cluster-
ing, reinforcement learning, etc., can be determined. The
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composition of problem formulation helps to understand the
conventional ML Approach to improve the performance of
Opportunistic Networks.

Data Collection: ML tasks usually depend upon the char-
acteristics of the data. ML framework utilizes to explore po-

tential correlations between the input and output data with-
out human intervention [2] [145]. Data collection is a cru-
cial step in Opportunistic Networks since networks scenario
varies from one-time duration to the other. There are mainly
two types of datasets, namely Real trace and Mobility mod-
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els. The real trace dataset is generated from the real-world
experiment, whereas Mobility models mimic the real sce-
nario and movement of mobile nodes.

Feature Extraction: Massive datasets have many features
that require the processing of many computing resources.
Consequently, this phase intends to decrease the number of
features in a dataset by producing distinct features from the
existing ones (and then abandoning the original features).
Feature extraction is selecting and combining significant fea-
tures that effectively reduce the volume of data needed to
process [136]. In Opportunistic Networks, revealing features
such as the number of encounters with nodes, social strength
of nodes, community detection, and finding selfish nodes is
essential. These feature helps to improve the performance of
networks.

Develop Model: It is the method of feeding an ML tech-
niques with data to recognise and learn relevant characteris-
tics of Networks. The process of developing an ML model
involves using an ML techniques with training data to adapt
the dynamic behaviour of Opportunistic Networks [149]. In
the development phase of ML models, it is suitable that the
trained model works well on unseen and new data. In or-
der to disguise such data from the available data, proper data
splitting is required. (Often mentioned as the train-test split).

Model Validation: After the development of a model, it
is evaluated to verify whether the desired performance has
been achieved. This phase also determines whether the opti-
mization is obliged to enhance performance [149] [99]. The
relevant network scenarios are then supplied into the model
to measure the performance. Usually, the performance mea-
sures for Opportunistic Networks are in terms of Delivery
Probability, Overhead, Average Latency, Average Hop Count,
Energy Consumption, etc.

Deploy Model: In this phase ML model is deployed in
the specific network scenario to evaluate with the test datasets
[149]. The test set is a collection of network circumstances
utilised to measure the model’s performance using the per-
formance metric mentioned in the above phase. This phase
is the method where a trained model is assessed with a test-
ing dataset.

4.2. Supervised Learning in Opportunistic
Routing Protocols

In supervised learning, the main task is to learn the target
values used to predict class values. It is the process of de-
veloping a model that can predict the unknown values (test-
ing environment or output variables) using the known val-
ues (historical data or input variables). Supervised learning
is divided into two categories: classification and regression.
This section discusses the classification techniques used in
Opportunistic Networks [189].

4.2.1. Decision Tree-based protocols

We have analysed routing protocols in Opportunistic net-
works that utilise decision tree algorithms for routing de-
cisions. These protocols employ decision tree models to
classify nodes or predict optimal routes based on various

attributes, enhancing routing efficiency and adaptability in
dynamic network environments.

+C [137]: The multi-copy routing algorithms transmit
multiple copies of a message to increase the delivery prob-
ability and reduce the delivery delay. However, at the same
time, it increases the network overhead. The principal goal
of the proposed work is to decrease the network overhead
without decreasing the delivery probability by applying ML
techniques. The algorithm is divided into three phases: In
the first phase, the message-forwarding data is collected from
all the nodes. In the following phase, the collected data is
used as a training set to build the Decision Tree for classifi-
cation. In the last phase, network nodes use the classifier to
predict whether the neighboring node is a suitable forwarder.
So, instead of forwarding copies of a message to all neigh-
boring nodes, the classifier restricts the number of copies by
predicting a better node to deliver the message. The per-
formance evaluation for the proposed approach is done us-
ing different real-world mobility traces and datasets in ONE
simulator [90]. The proposed approach reduces the network
overhead of two regular DTN routing algorithms, namely
Epidemic [182] and Spray and Wait [174], by integrating
ML classifiers.

CAML [185]: The paper proposed the cascade learning-
based ML approach for routing, which is named as Cascaded
ML-based routing protocol (CAML) for Opportunistic IoTs
(OpploTs). Cascade learning is an ML-based ensemble tech-
nique used in class imbalance problems. In this approach,
each classifier passes its knowledge to other classifiers. The
CAML builds upon the idea of MLProph [157] algorithm,
which calculates ML probability for sending a message to
the neighbor. In CAML, logistic regression as an additional
classifier is used to calculate the probability of message de-
livery. The cascade classifier is built using Logistic Regres-
sion, Random Forest, Support Vector Machine, and MLP
Neural Network. Each classifier trains sequentially and passes
the input to other classifiers. The simulation result shows
that the CAML outperforms MLProph [157], KNNR [160],
HBPR [49], ProPHET [107] in terms of delivery probability,
overhead ratio, and average hop count.

4.2.2. Naive Bayes and Bayesian Learning-based
protocols

We have reviewed routing protocols in Opportunistic Net-
works leveraging Naive Bayes and Bayesian learning tech-
niques for routing decision-making. These protocols enhance
route selection and network performance in uncertain and
dynamic communication scenarios by probabilistically mod-
elling node behaviours and network conditions.

FSF[171]: The proposed Friendship and Selfishness For-
warding (FSF) algorithm takes the forwarding decision based
on two aspects: First, it measures friendship strength be-
tween the nodes using ML techniques. Second, it identifies
selfish nodes that do not receive the message despite having
a strong friendship with the destination node. ML’s Naive
Bayes Classifier approach measures the friendship strength
between two nodes. It considers attributes like the frequency
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of meetings, contact duration, and the number of calls and
messages. There are two types of selfish node behaviour
for selfish nodes: selfish in a few situations, e.g., resource
constraint, and others who behave selfishly all the time. A
reputation-based selfishness detection mechanism is used to
assess the selfishness of the nodes. The simulations are per-
formed in the ONE simulator [90] using real datasets, and
results show that the FSF algorithm performs better than the
Epidemic [182], ProPHET [107], BubbleRap [74] in terms
of delivery ratio, average cost, and average efficiency.
Q-Routing [53]: This paper proposed the framework of
the ML-based DTN routing algorithm. The main focus of
the proposed technique is to improve space networking, where
the end-to-end path may not exist. It applies bayesian learn-
ing and reinforcement learning ML techniques with the com-
bination of well-known Contact Graph Routing (CGR) algo-
rithm [11] for DTN. CGR takes the routing decision based
on the last meeting of the nodes and contact times. The re-
inforcement learning-based Q-routing algorithm estimates
the delivery time for end-to-end transmission using the re-
ward table or Q-table. The learner chooses the neighbor-
ing node for packet delivery, which minimizes the delivery
time. The Bayesian technique calculates the most favorable
outcome called the posterior or MAP hypothesis. The pro-
posed method uses previous contacts of nodes to determine
the probability of reliability in the future for the same con-
tact opportunities. The probability depends on contact start
and stop times, data rates, distance, and the number of meet-
ings. The open-source discrete event simulator OMNET++
[183] is used, and the simulation results show that ML-based
protocol outperforms ProPHET [107] and CGR [11].
BACE [16]: In this paper, the Bayesian Network (BN)
based algorithm, namely BACE, is proposed to estimate nodes’
contact probability in DTN. The two nodes’ contact proba-
bility prediction depends on the average contact time, con-
tact frequency, and average contact interval. Two real datasets,
i.e., Cambridge [154] and Reality [54], are analyzed to un-
derstand the distribution of contact probability. BACE can
obtain this statistic and gives an accurate forecast of nodes’
encounters for the future. BACE consists of the graphical
structure connecting variables, a set of variables, and local
conditional probability distribution used to calculate contact
probability. The ONE Simulator [90] is used to compare
the BACE with the existing approach, namely the ProPHET

[107] routing algorithm and the Power-law distribution method

[39]. The experimental results show that BACE gives the
highest predictive accuracy and an increased delivery ratio
for all four datasets.

MBN [118]: In real life, most vehicles have repetitive
movement patterns but are time-based. Due to this, a single
prediction model cannot predict accurately. The paper pro-
posed the Multi-period Bayesian (MBN) Network to gener-
ate multiple prediction models to predict the repetitive move-
ment of a vehicle. The Bayesian network contains a set of
probabilities, variables, and a graphical structure that con-
nects variables to improve the routing decision. Dynamic
Multiple Level Classification (DMLC) is used to classify the

nodes and optimize the classification through a dynamic pa-
rameter. The routing algorithm comprises five phases: node
classification, attribute selection, structure learning, forward-
ing technique, and inference strategy. MBN is compared
with Epidemic [182] and ProPHET [107] routing algorithms
through the ONE simulator [90]. The experimental results
show that the MBN improves delivery probability with less
forwarding overhead.

FSF [172]: This paper proposed a novel technique to
classify the friendship strength between nodes. Friendship
and Acquaintanceship Forwarding (FSF) uses a Naive Bayes
algorithm to find social strength between destination and in-
termediate relay nodes. FSF only forwards a message to
those nodes that are friends or acquaintances. Different pa-
rameters are considered to determine friendship strength be-
tween nodes, like contact time, duration, contact time, and
frequency. This algorithm also considers the critical issue
of the socially selfish nodes, which are not participating in
the message relaying between nodes. The algorithm iden-
tifies a node as socially selfish using existing detection and
reputation-based mechanisms and does not transmit a mes-
sage to that node. In the detection system, components are
installed in every node responsible for identifying selfish neigh-
bour nodes based on past behaviour. The simulation is per-
formed in the ONE simulator [90], and the results show that
the proposed algorithm increases the delivery ratio compared
to Epidemic [182], ProPHET [107], and BubbleRap [74].

K2-GA [196]: In this paper, the authors have proposed
Bayesian Network (BN) based routing algorithm named K2-
GA to build the prediction model. The prime focus of K2-
GA is to predict the mobility patterns of nodes in the Vehic-
ular Delay Tolerant Network (VDTN) scenarios. VDTN is
a particular type of DTN network that considers vehicles as
nodes. More attributes of nodes are considered to improve
the BN model’s prediction accuracy. These attributes are
supposed to expose the node’s movement pattern by which
the number of message copies can be decreased in the net-
work. The proposed K2-GN algorithm combines the K2 al-
gorithm [36] with a genetic algorithm to determine optimal
BN structure efficiently. The simulation results obtained us-
ing ONE simulator [90] show that K2-GA achieves a com-
petent delivery ratio with a minor overhead ratio.

RFCSec [86]: The authors have proposed Random For-
est Classifier based protocol named RFCSec for reliable and
safe routing for OpploT. The proposed protocol is divided
into two phases: Training and Testing. In the training phase,
the protocol is trained on real data traces whereas, in the test-
ing phase, the protocol classifies optimal forwarding nodes
based on their prior behaviour in the network. This phase
identifies malicious nodes and encourages participation of
other nodes in forwarding which has a low message drop
rate, higher buffer capacity, stable forwarding behaviour and
high probability of message delivery. The simulation per-
formed in ONE simulator [90] shows that RFCSec protocol
is a considerably reliable and secure protocol as compared to
RLProph [159], MLProph [157] and CAMP [190] Protocols.
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4.2.3. Diverse Learning-based Protocols

We have examined routing protocols in Opportunistic
Networks that employ diverse learning such as SVM, regres-
sion, KNN and other algorithms for routing optimisation. By
analysing historical data and network parameters, these pro-
tocols predict optimal routes and adjust routing decisions to
improve communication efficiency and reliability in Oppor-
tunistic Networks.

UMCRP & GMCRP [138]: The significant issue related
to DTN-enabled VANETs: is identifying the best node and

time to forward the message. This paper proposed the timeliness-

aware trajectory data mining method to predict the future po-
sition of nodes. The dynamic VANET topologies are main-
tained by developing a sparse graph model using predicted
time information of nodes. Based on this, two routing algo-
rithms are developed: a timeliness-aware data mining algo-
rithm and a sparse time-space model. The timeliness-aware
data mining algorithm uses association rule mining to pre-
dict the location of moving nodes because the current state
of moving nodes is affected by the previous state. Using this
predicted result of node movement, it can generate a time-
space graph and determine the path with minimum link over-
head on the sparse graph model. The simulation results show
that the proposed algorithm provides a highly reliable route
and cost-efficient connectivity.

KNNR [160]: For selecting the appropriate intermediate
node, the past behavior of nodes needs to be understood. The
K-nearest neighbor-based protocol named KNNR is proposed
to select a suitable carrier node for a message based on the
nodes’ state. A node’s state information includes buffer space,
time-out ratio, the distance between a neighbour node to the
destination node, hop count, speed of neighbour node, and
meeting probability. The KNNR protocol has two classes:
class-0 and class-1. In the application phase, when a node
encounters a neighbor node, if the node classifies it in class-
1, then a message is transferred. If it belongs to class-0, then
the message is not transferred. The KNNR is compared with
Epidemic [182], HBPR [49], and ProPHET [107], and simu-
lation results show that the KNNR outperforms these proto-
cols in terms of delivery probability, overhead ratio, average
latency, and hop count.

We have also surveyed related works in supervised learn-
ing approaches. Among these, RF-BBFT [126] is a random
forest-based multimedia big data routing protocol for social
OpploTs. By considering metrics like direct bonding, node
popularity, and power consumption, RF-BBFT achieves su-
perior performance in successful transmissions, average la-
tency, and buffer time compared to existing techniques, out-
performing BBFT and MLProph. iPRoPHET [176] presents
an improved PRoPHET-based multi-copy routing algorithm
for OpploTs networks, utilizing a Random Forest classifier to
categorize nodes as reliable or non-reliable forwarders. By
leveraging contextual information and delivery probability,
iPRoPHET enhances delivery probability and reduces hop
count and overhead ratio, albeit with slightly increased aver-
age buffer time, showcasing superior performance in multi-
copy routing for IoT communication.

ML-Fresh [64] is a novel framework designed to address
challenges faced by Opportunistic Networks, such as blind
data forwarding and performance degradation due to increas-
ing data sizes. ML-Fresh aims to establish optimal com-
munication paths between participating nodes by leverag-
ing ML techniques, including pattern prediction, decision
tree prediction, and the Adamic-radar method. Combo-Pre
[102] is a combination link prediction method designed to
enhance routing protocol efficiency in Opportunistic Net-
works. By leveraging periodic pattern mining, decision tree
methods, and the Adamic-Adar method, Combo-Pre predicts
various contact patterns among node pairs more accurately
than existing single-method approaches. Experimental re-
sults demonstrate that Combo-Pre outperforms state-of-the-
art link prediction methods in terms of routing cost reduction
and delivery rate. The paper [7] focuses on enhancing the
traditional PROPHET protocol in Opportunistic Networks.
By leveraging association rule mining, a ML technique, the
proposed ARBP routing protocol aims to improve message
delivery, reduce overhead, minimize dropped messages, and
lower latency. This approach utilises historical data from
PROPHET and applies association rules to identify optimal
encountering nodes for efficient message delivery.

The Comparative Analysis of Supervised Learning in Op-
portunistic Networks is presented in Table 4.

4.3. Reinforcement Learning in Opportunistic
Routing Protocols

The reinforcement learning algorithm is an ML approach
concerned with taking suitable action by an agent that max-
imizes the reward in a particular environment. The agent
decides to maximize its reward and minimize the penalty by
learning the environment/situation. This model keeps learn-
ing and maximizes performance. The reinforcement learn-
ing algorithm is the preferred choice where the environment
is known but does not have an analytical solution. The rein-
forcement learning model can sustain the changes for a more
extended period [189].

4.3.1. Q-Learning-based Protocols

We have explored protocols that utilize Q-learning, a fun-
damental reinforcement learning algorithm, to determine op-
timal action-selection policies in various environments.

QLAODV [194]: This paper proposed the QLAODV
(Q-learning AODV) protocol for VANET. QLAODV is a
distributed reinforcement learning-based routing protocol ca-
pable of adapting to frequent path changes and works well in
a highly dynamic network environment. In QLAODYV, each
node maintains a table of Q-values by exploring environ-
ment states and each possible action. For forwarding, the
message nodes choose the next hop with the highest Q-value.
If the message reaches the destination node with the selected
action, it makes the reward 1; otherwise, 0. The learning rate
parameter & shows how quickly learning happens, and the
discount factor controls the values of future rewards. For
maintaining the Q-table, every node frequently exchanges
the hello packets with neighbor nodes to exchange link in-
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Table 4
Comparative Analysis of Supervised Learning in Opportunistic Networks
Year Protocol Category Functionality Advantages Comt[;ared Dataset Val-lrtiaotllon
Super\{lse.d Classifier is Reduce the Epidemic [182] , Bus
2014 +C [137] Learning: used to network Spray Movement ONE
Decision predict good overhead and Wait [174] (Seattle Simulator [90]
Tree-J48 forwarder node ver : buses)
Uses trajectories .
UMCRP & Trajectory mining for Predict the Ul_o(f:FI’_—eliZLon Time
2017 Data frequent future position Evolving Custom
GMCRP [138] Mini . Cost Path
ining movement of of vehicle Network
(ULCP) [73]
nodes
Measures
FSF . . - Increase . .
Friendship & Super\{lsed friendship delivery Epidemic [152], Infocom05 [154], ONE
2017 . Learning: strength and PRoPHET [107], . .
Selfishness N R . and reduce Cambridge [154] Simulator [90]
. Naive Bayes identify selfish BubbleRap [74]
Forwarding [171] Lsers average cost
Supervised Reward Finds future
Learning: table/Q-table contact Custom
2018 Q-routing [53] Bayes.|3n is used‘ to op;?ortunlty ProPHET [107], Mobility OMNET++ [183]
Learning, choose neighbor using past CGR [11] Model
Reinforcement node for contacts of ode
Learning transmission nodes
Supervised Learning Used to . . Map based
2017 KNNR [160] Learning: nodes select ET'C:_;I:;C[L[‘;?] movement ONE
K-nearest activities suitable PROPHET [167] model [90], Simulator [90]
Neighbour using K-NN carrier nodes ° Reality [54]
. Bayesian
-~
2018 BACE [16] ne: used to ) PRoPHET [107] and .
Bayesian using contact . Simulator [90]
Learnin measure contact histor Reality [54]
g probability Y
Predict Improves
Supervised vehicle the Zeliver Seattle
2018 MBN [118] Learning: movement ratio withy Epidemic [182], Public ONE
Naive pattern using minor Prophet [107] Transport Simulator [90]
Bayes Bayesian overhead System
network
FSF . Routing Identify .
Friendship & SLuper:?:]se.d decision is the selfish Epidemic [182], Cal:l'ncbéﬁg[eléll?ll], ONE
2019 Acquaint- elela' eg- based on nodes which PRoPHET [107], Sassy [23] ' Simulator [90]
anceship B v social ties improves BubbleRap [74] R “{ [54] 1mu
Forwarding [172] ayes between nodes delivery ratio ety
Supervised Compute contact
Learning: Prtf;ability to Performs better ~ MLProph [157], Map
Logistic Regression, . than MLProph KNNR [160], based ONE
2019 CAML [185] SVM, Neural mdake. fzrwar.dlng and ML-based HBPR [49], Movement Simulator [90]
Network, ccision using routing protocol  PRoPHET [107] Model [90]
cascade learning
Random Forest
K2 [36] and Improves
Supervised genetic routing Real
Learning: algorithm is performance by Epidemic [182], Mobility ONE
2020 K2-GA [196] Bayesian used to predict predicting PRoPHET [107] Traces of Simulator [90]
Learning mobility vehicle's Buses [94]
pattern position
Random forest Encourages
Supervised classifier nodes with
L . MLProph [157],
2020 RFCSec [86] Learm.ng. ba.sed protocol good forv_vardmg RLProph [150] MalGenome . ONE
Bayesian is used to behaviour CAML [185] [212] Simulator [90]
Learning find malicious to participate
nodes in transmission

formation. The paper performed an exhaustive simulation
with different mobility models and showed significant im-

in which a group of nodes makes a forwarding decision using
a cost function when each node contacts another node. CLR
provement in performance than AODV [132], AODV-HPDF  technique handles a complex time-varying problem where
[105] and Neighborhood Route Diffusion (NRD) [139]. global knowledge of the system is unknown. This approach

ARBR [58]: Adaptive Reinforcement based Routing (ARBR)considers the feedback of user behavior and network con-
uses a collaborative reinforcement learning (CLR) technique ditions like buffer occupancy, congestion, and node mobil-
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ity statistics to measure the quality-metric function. The
quality-metric function is used to decide for each active mes-
sage. The proposed model considers the states, transitions,
actions, and reinforcements for DTN routing to make a for-
warding decision. Each node maintains the network infor-
mation for a fixed time window and the rate of change in
connectivity used for the transfer from consecutive windows.
ARBR is a multi-copy routing scheme that uses a community-
based mobility model. ARBR shows significant performance
improvement in the parameters like delivery ratio and aver-
age delivery delay compared to Epidemic [182], SARP [57].

node speed, bandwidth, etc. The Q-learning considers the
network parameters and state transition to predict the most
suitable forwarding node based on reward. The node with
the highest reward is qualified as the next forwarding node.
In a reward-based mechanism, the FQLRP considers some
fuzzy parameters: the node’s energy and movement. Fuzzy
logic uses these parameters to measure reward that helps to
select the next forwarding node. The simulation performed
using the SPMBM [90] model and the Infocom [154] dataset
shows that FQLRP improves the performance in terms of de-
livery ratio, overhead ratio, average delay, and under varying

DTRB [146]: Delay Tolerant Reinforcement-Based (DTRB) TTL.

protocol is a Multi-Agent reinforcement learning to find the
best route and forward the messages based on reward. The
reward is calculated by an algorithm based on distances be-
tween the nodes, which are the function of time from the
last meetings. DTBR is a flooding-based routing approach
and uses a gossip algorithm to measure the latest information
exchange. In DTRB, nodes exchange the knowledge using
broadcast “ControlMessage,” which is sent at regular inter-
vals. It contains two types of information: the distance table
and the generated rewards by message exchange. The fun-
damental assumption is that the nodes that recently transfer
gossip about the destination are more likely to deliver the
message and consequently receive the rewards. Every node
maintains a reward table, and rewards are recalculated when
the node again receives a “ControlMessage.” The learning
rate shows how quickly the Q-value changes with a change
in topology, and a discount factor controls the value of the
future reward. The simulation result shows DTBR performs
well for the dense network and achieves a better delivery ra-
tio and low network overhead than the well-known ProPHET
[107] algorithm.

SaRE-MANET [61]: Recently, Opportunistic Networks
protocols use social ties to improve performance but are not
applicable in a harsh network like a battlefield. The paper

proposed the SaRE-MANET (Situation-aware Robot Enhanced

Mobile Ad-hoc Networks) protocol that observes multi-robot
mobility in a harsh environment using reinforcement learn-
ing. The main objectives of SARE-MANET are: 1) De-
veloping a framework for MANET routing that effectively
handles multi-robot movement. 2) Designing a reinforce-
ment learning-based routing protocol that manages multi-
robot path planning and handles the complex environment.
The Q-learning is used to learn optimal routing by using the
frequency of encounters between robots, the movement of
robots, and the current probability of a robot transmitting the
message to the destination—the protocol tested for both uni-
cast and multicast routing. The simulation and experiments
show the effectiveness of the proposed protocol compared to
BubbleRap [74], OLSR [38], and Simbet [46].

FQLRP [51]: The proposed Fuzzy logic-based Q-Learning

Routing Protocol (FQLRP) uses fuzzy logic with Q-learning
for efficient routing in Opportunistic Networks. The pro-
posed approach finds the optimal forwarding node by consid-
ering various network parameters such as buffer occupancy,
the number of hops to deliver the message to a destination,

RLProph [159]: In this paper, the authors attempt to
completely automate the OpploT routing with the help of
the Policy Iteration algorithm that increases the likelihood
of message delivery. Furthermore, the proposed RLProph
protocol models the OpploT as a Markov Decision Process
(MDP) that considers network states, rewards, actions, and
transition possibilities. To develop MDP in OpploT, one
must first define a state that describes the nodes’ characteris-
tics and behavior. The reward function is formed to promote
the behaviour of nodes. Actions define all the activities per-
formed by the nodes, such as relay, forward, discard mes-
sages, etc. Finally, the state transition probability function
defines the likelihood of shifting from one state to another.
Based on state transition probability, the RLProph can deter-
mine the ideal state for the message transmission and wants
the nodes to be in that state. The proposed approach can
optimize the routing process by discovering optimal policy
through MDP. The simulation result obtain using ONE sim-
ulator [90] shows that RLProph performs better than Epi-
demic [182], ProPHET [107], HBPR [49], KNNR [160] on
a various performance metrics.

QBOR [81]: Underwater Acoustic Sensor Networks (UASNs)

have drawn considerable attention in past years due to their
exploration and monitoring capabilities. It has been utilised
in several fields, resulting in a tremendous rise in the types
and amounts of data. UASNs must periodically transfer the
data to the data center efficiently and reliably. The proposed
Q-learning-Based Opportunistic Routing (QBOR) protocol
provides real-time data upload to onsite architecture. QBOR
protocol follows the mechanism of opportunistic routing pro-
tocol, where data transmission happens via neighbours and
intermediate nodes. In the Initial Phase, the sensor devices
collect the information from the monitoring channel. After
that, QBOR is utilized to find the optimal forwarding node.
For the reward function, the residual energy and packet de-
livery probability are considered in routing to achieve higher
energy efficiency and Packet Delivery Ratio (PDR). The sim-
ulation result shows QBOR significantly improves PDR, en-
ergy consumption, and average delay performance.

RLOR [205]: Due to limited energy and low bandwidth
of sensor nodes, the UASNs suffer from high delay and bit
error rates. Developing a reliable and robust routing pro-
tocol for such a dynamic network is essential. The authors
have proposed a Reinforcement Learning-based Opportunis-
tic Routing (RLOR) protocol that combines the advantages
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of reinforcement learning with opportunistic routing. The
RLOR protocol follows a distributed approach that considers
the node’s current status to choose appropriate relay nodes.
The node’s state information helps the RLOR protocol dy-
namically optimize the routing path, improving energy ef-
ficiency and data transmission reliability in real-time. The
data delivery rate decreases in the sparse area due to the
scarcity of nodes. RLOR proposes a new recovery mech-
anism to enable the void node that selects a recovery node
to bypass the sparse/void region. The void node is the node
that belongs to a sparse area. The recovery mechanism uses
reinforcement learning to enable void nodes to identify the
appropriate recovery relay nodes to recover the transmission
path. The result shows that the RLOR protocol achieves sig-
nificant performance in terms of data delivery, end-to-end
delay, and energy efficiency.

4.3.2. Diverse Learning-based Protocols

We have surveyed protocols employing advanced rein-
forcement learning techniques such as Double Q-learning
and Deep Reinforcement Learning, offering innovative so-
lutions for diverse networking challenges.

DQLR [201]: The performance of DTN can be improved
using reinforcement learning of ML. However, choosing a
suitable forwarding node is still an open issue that needs
to be solved. The appropriate forwarding node improves
the performance of networks. Q-Learning behaves poorly
in a few environments due to a considerable overestimation
of the action values. This paper proposed the Double Q-
learning Routing (DQLR) that solves the overestimation prob-
lem and selects the appropriate forwarding node distribut-
edly. Instead of maintaining a single Q-value like Q-Learning,
Double Q-Learning maintains two Q-values to avoid over-
estimation. DQLR learns the pattern of intermediate nodes
related to the destination and develops the optimized routing
policy to improve the performance. The intermediate nodes
get a higher reward if it takes fewer hops to forward a mes-
sage to its destination. DQLR is a greedy technique that se-
lects the forwarding node with the highest reward value. The
simulation performed in ONE simulator [90] using mobility
models and real datasets shows the improvement in the de-
livery ratio with low overhead compared to ProPHET [107]
and Q-learning protocols [146].

Our survey extends to encompass prior works utilizing
reinforcement learning paradigms to fine-tune routing mech-
anisms within Opportunistic Networks contexts. DQNSec

[85]1s arouting approach for securing OpploT networks against
sinkholes, hello floods, and distributed denial of service (DDoS)

attacks. It leverages Deep Q-Learning (DQL) to ensure the
network’s security. DQNSec models OpploT as a Markov
Decision Process (MDP) to address security challenges ef-
fectively. By incorporating the actor-critic approach of DQL,

rithms, DeepMPR eliminates the need for MPR announce-
ment messages and outperforms MPR selection. The pro-
posed approach showcases its effectiveness in reducing net-
work overhead and enhancing reliability in opportunistic rout-
ing scenarios. The article [110] addresses the opportunistic
UAV-assisted data transmission challenge in wireless sensor
networks. The study jointly optimizes UAV scheduling and
power control to maximize network data transmission over
time. Formulating the problem as a MDP, the authors em-
ploy DRL, specifically Deep Q-Network (DQN) and Deep
Deterministic Policy Gradient (DDPG), to obtain optimal
solutions.

Several studies have explored the application of reinforce-
ment learning techniques in optimizing routing [186] [45],
congestion control mechanisms [166], energy efficiency [112]
and latency [158] in Opportunistic Networks. These approaches
leverage reinforcement learning algorithms to dynamically
adapt routing decisions based on network conditions. By uti-
lizing reinforcement learning, these methods aim to improve
Opportunistic Networks’ overall performance and reliability,
offering adaptive and efficient routing solutions in dynamic
and challenging environments.

The Comparative Analysis of Reinforcement Learning
in Opportunistic Networks is presented in Table 5.

4.4. Neural Networks and Fuzzy Logic in
Opportunistic Routing Protocols

Neural Networks (NN) and Fuzzy Logic are part of the
soft computing area. NN focuses on forming the human
brain like hardware imitating the primary functions, Whereas
the Fuzzy Logic systems focus on software that imitates sym-
bolic and fuzzy rationalising. NN learns from data similar
to the biological neural network, while Fuzzy logic decides
on ambiguous and raw data. Neural Networks and Fuzzy
Logic are primarily divided into two categories 1) Modelling
several characteristics of the human brain, such as learn-
ing, reasoning, structure, and perception, etc. 2) Modelling
the artificial systems and associated data, such as clustering,
recognition, parameter estimation, function approximation.
In this paper, two types of neural networks are presented: Ar-
tificial Neural Networks (ANN) and Recurrent Neural Net-
works (RNN) [189].

4.4.1. Artificial Neural Network-based Protocols

We have reviewed protocols leveraging ANN to make
routing decisions in Opportunistic Networks, capitalising on
the parallel processing capabilities and learning mechanisms
inspired by the human brain.

iRPROPR [27]: In the Opportunistic Networks, if the
nodes can predict the future location of neighboring nodes,
they can use this information to choose suitable nodes that
carry the message to the destination. The proposed approach

DQNSec outperforms other ML-based routing protocols. DQNSads used to predict the location of nodes by investigating con-

enhances network security and resilience in dynamic and ad-
versarial OpploT environments. DeepMPR [89] is a multi-
cast routing technique designed using multi-agent DRL. Un-
like traditional multi-point relaying (MPR) selection algo-

tinuous numeric coordinates using ANN. The ANN uses Fast
Artificial Neural Network (FANN) to design and test the
model. FANN is an open-source programming library used
to develop multilayer feedforward ANNs. The iRPROPR al-
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Table 5
Comparative Analysis of Reinforcement Learning in Opportunistic Networks.
Year Protocol Category Functionality Advantages Comtzared Dataset Val_lrtiaotllon
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. actions and good stability, . . Community
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; Model
forwarding delay
decision
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Q- table Random
Reinforcement nd Q-val for dense W,
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Learning updates with Point [21],
. reduce
change in . UDEL [93]
overhead ratio
topology
Observes the Improves
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2018 . of multi-robot by learning OSLR [38], . .
MANET [61] Learning . ; > g test site Experiment
in a complex optimal routing SimBet [46]
environment strategy
Double Uses the
' Q-learning is pa.tl'T with ProPHET [107], Map based
Reinforcement used to minimum h Movement ONE
2019 DQLR [201] . Q-Learning .
Learning select the no. of hops Protocol [146] Model [90], Simulator [90]
forwarding to reach Infocom06 [154]
node destination
rev[v):rtjrgrl]r::i?on Helps to Infocom [154],
2020 FQLRP [51]  Reinforcement e eneray identify most Epidemic [182] Map based _ONE
Learning Lo suitable carrier movement Simulator [90]
distribution
node model [90]
amongst nodes
L Optimize Helps to Epidemic [182],  Cambridge [154],
202 RLProph [150] Reinforcement N guzn identify most ProPHET [107], Map based ONE
P Learning markgv decgi;sion suitable carrier HBPR [49], movement Simulator [90]
process (MDP) node KNNR [160] model [90]
i infgrsesm , Optimizes MURAO [72],
Reinforcement Iernincisb © d routing EE-DBR [52], Random
2021 QBOR [81] eL or::n N eZi trii taze path, improves Flooding [4], Way Custom
earning : s . t“ e et reliability of VAPR [127], point [21]
approach to SETect . ta transmission RDBF [103]
forwarding nodes
Q-learning Imbrov
incorporates neFt)v:oreks DBR [199],
Reinforcement with the HHVBF [124], UASNs
2021 RLOR [205] Learning traditional perZormance QELAR [71], Scenario Custom
Opportunistic anc energy GEDAR [41]
. utilization
algorithms

gorithm is used to train the ANN, and the ANN is used as a
routing protocol after testing. In the ANN, seven input neu-
rons, two output neurons, one hidden layer, and fifteen hid-
den neurons were chosen as architecture. The ANN predicts
location by determining which neighboring nodes are clos-
est to the destination. For that, the ANN takes two previous
times and locations as input along with the current time and
predicts x and y coordinates. After the experimental results,
the paper concluded that even with the change in the num-
ber of nodes, contact duration, and mobility model, the ANN
can still predict a node’s future location with high accuracy.

MLProph [157]: This paper proposes novel ML tech-
niques based on an opportunistic routing protocol named
MLProph. It uses a neural network and decision tree algo-
rithms to train the model based on factors like hop count,
buffer capacity, node energy, number of successful deliv-
ery, and popularity parameters. The MLProph algorithm is
divided into two parts: Training and Real Simulation. A
dataset was generated for neighbor nodes by simulating the
training phase. These generated data are used to train above
mentioned models. The Real Simulation phase first captures
the ProPHET [107] probability and calculates the probabil-
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ity value P,, called ML probability using ML models. The
message is forwarded to the neighbor node if P, > K * P,
where K is a normalization factor, and P, is ProPHET [107]
probability. The neural network and decision tree models
are trained and deployed using the Weka ML library. Com-
pared with the well-known ProPHET [107] algorithm, the
simulation result shows that MLProph outperforms in terms
of overhead, hop count, delivery probability, and dropped
messages.

IWDNN [98]: It is required to have an intelligent dy-
namic strategy to choose the optimal forwarding node to im-
prove routing performance in Opportunistic Networks. This
paper proposes an Intelligent Water Drop Neural Network-
IWDNN routing protocol that utilises Intelligent Water Drop
(IWD) Algorithm [155] with Neural Networks. The protocol
uses a nature-inspired algorithm to optimize weights rather
than the standard back-propagation algorithm. The nature-
inspired algorithm is stable and robust to dynamic changes
in Opportunistic Networks. The IWD algorithm minimizes
the error by calculating the optimal weight for neural net-
works. IWDNN outperforms other protocols that follow a
related ideology, such as MLPROPH [157], KNNR [160],
ProPHET [107], CROP [68], IICAR [18] The result shows a
significant improvement in terms of delivery ratio, latency,
overhead ratio, and message drop.

4.4.2. Recurrent Neural Network-based Protocols

We have analysed protocols that employ RNN to handle
temporal dependencies and sequential data, offering robust
solutions for routing in dynamic and time-varying Oppor-
tunistic Network environments.

RNN-LP [29]: The link prediction can help to predict
the future links between the nodes; this information helps
to make an effective message-forwarding decision. The pa-
per proposed the recurrent neural network link prediction
(RNN-LP) framework for link prediction. It uses historical
information about the node’s link that affects the connection
state in the next moment. The protocol generates the vec-
tor consisting of node information and the node’s historical
connection information using the time series method, t. The
recurrent neural network in sequence modeling obtains hid-
den features from the vector sequence data. Using this model
predicts the node pair connection state at the next moment.
The performance of RNN-LP is measured under different
realistic parameters and with traditional similarity indices.
The experimental result shows that the proposed approach
gives better link prediction for the Cambridge [154] and MIT
datasets [54].

DLDF [190]: The extensive use of mobile and its tra-
jectory data makes it possible to use deep learning in the
mobile social network to design a forwarding algorithm. By
using the strong feature learning ability of deep learning, the
paper proposed a data forwarding algorithm named DLDF
(Deep Learning-based Data Forwarding) to find a fixed path
between source and destination. DLDF designs an RNN-

recurrent neural network using LSTM (Long Short-Term Mem-

ory) to predict the encounter probability between the nodes.

It takes several time intervals as input for nodes meeting
for a given time window and delivers the output of the next
meeting probability between nodes in the next time window.
Based on this, it composed a fixed path with high proba-
bility links that transmit the data between source and desti-
nation. The simulation result includes delivery ratio, delay,
overhead, hop count, and a path set cardinality for perfor-
mance metrics. Compared with the existing algorithms like
Epidemic [182], Spray and Wait [174], and SEBAR [101] al-
gorithms, the proposed approach significantly increases the
delivery ratio and reduces network overhead.

4.4.3. Fuzzy Logic-based Protocols

We have examined protocols utilising Fuzzy Logic, a
computational paradigm inspired by human decision-making
processes, to handle uncertainty and imprecision in Oppor-
tunistic Networks routing, enhancing adaptability and effi-
ciency.

HMM [118]: This paper proposes a routing protocol for
an Opportunistic Networks which learns the data traffic pat-
tern and extracts data semantics. It uses Hidden Markov
Model (HMM) and Fuzzy Logic to learn the traffic pattern
generated in the Opportunistic Networks. The algorithm uses
data traffic information passed amongst routing nodes and
database servers. It uses the HMM-based semantic reason-
ing model to estimate the information related to node loca-
tion, speed, and resources which helps to identify a partic-
ular node. For simulation, the proposed approach is inte-
grated with two well-known algorithms, namely Epidemic
[182] and ProPHET [107], which are flooding-based and
prediction-based routing protocols, respectively. The result
shows that intelligence-based routing protocol gives higher
data delivery, minimizes overhead ratio, and improves la-
tency.

FDQLR [197]: This paper proposes a Fuzzy logic-based
Double Q-Learning Routing (FDQLR) protocol to identify
an optimal route for message forwarding. The approach finds
the most suitable neighbour node in the routing process. A
fuzzy reward mechanism adapts the fuzzy logic that evalu-
ates the network characteristics. The characteristics such as
contact interval, node movement, and speed are converted
into the fuzzy reward of the Double Q-Learning. The Hot
Zone mechanism identifies the strength of the neighbour nodes
based on recent contact with the destination node. Whereas,
Drop mechanism is proposed to restrict the message copies
in the network without degrading the delivery ratio. The
effectiveness of FDQLR is examined using ONE simula-
tor [90] with two movement models, namely, the RioBuses
dataset [94] and the Map-Based Movement model [90]. The
result shows that FDQLR archives a better delivery ratio and
low overhead as compared to ProPHET [107], Q-Learning
Protocol [146], and DQLR [201].

RLFGRP [91]: This paper proposes Reinforcement Learning-

based Fuzzy Geocast Routing Protocol (RLFGRP) for Op-
portunistic Networks. The fuzzy controller uses reward value,
Q-value, and available buffer space as input parameters to
determine the likelihood of neighbour nodes being selected
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as forwarding nodes for the message toward the destination.
RLFGRP is designed to follow the feedback mechanism where
the model learns and adjusts automatically for the routing
process. Whenever a source node wants to send a message
to a destination node, the source node first discovers the Q-
value assigned to its neighbour nodes. The neighbour node
with the highest Q-values receives the message and deliv-
ers it to the destination. The simulation results determined
using ONE Simulator [90] show that RLFGRP outperforms
FCSG [92] and FQLRP [51] protocols in terms of delivery
ratio, overhead ratio, and average latency.

4.4.4. Diverse Learning-based Protocols

We have encompassed diverse protocols leveraging in-
novative techniques such as Genetic Algorithms, Deep Be-
lief Networks, and Deep Learning, showcasing novel ap-
proaches to routing optimisation and adaptation in Oppor-
tunistic Networks.

CDBN [162]: This paper proposes a link prediction ap-
proach using a deep learning framework for Opportunistic
Sensor Networks (OSN). It is used to capture the change in
topology and optimize the performance of the routing algo-
rithm using a Conditional Deep Belief Network (CDBN).
This method models the time series of past time and finds a
similarity index that denotes the dynamic behavior of OSN.
CDBN applies the multilayer Conditional Restricted Boltz-
mann Machine (CRBM) to model the time series. It extracts
the essential characteristics of the dynamic network using
the node’s contact information. After completing the train-
ing phase of the link prediction model, itis used in the testing
dataset to verify the model’s accuracy. The CDBN consid-
ers two problems: firstly, the link prediction approach used
in the social network is different for OSN. Second, the ap-
propriate learning rate is needed to train the model. A high
or low learning rate leads to instability in the model. The In-
focom [154] and MIT datasets [54] were used in the experi-
ment. It shows the effectiveness of predicting links of CDBN
over the prediction techniques like Adamic-Adar (AA), com-
mon neighbor (CN), resource allocation (RA), Katz, and lo-
cal path (LP) [191].

GASER [96]: This paper uses a genetic algorithm with
other methods to select the best path for forwarding the mes-
sage to the destination. For the sparse mobile Ad-hoc Net-
work, the paper proposed the genetic algorithm-based secure
and energy-aware routing (GASER) protocol. It selects the
best path in terms of the shortest path between the source and
destination and residual energy. The selected path includes
nodes with higher message forwarding possibility to a des-
tination than other network nodes. GASER securely identi-
fies the grey/black hole attack to avoid the packet dropping
from specific nodes. The GA method identifies three groups
for message forwarding, and this process continues until the
message reaches the destination group. The proposed algo-
rithm saves the energy of nodes, reduces the computation
power, and is secure compared to Epidemic [182], ProPHET
[107], and Spay and Wait [174] protocols.

IRWR-DBN [106]: The proposed link prediction approach

called IRWR-DBN is used to predict the likelihood of fu-
ture links between nodes. The network information, such as
mobility model, network topology, intermittent connections,
and node attributes, are used to estimate future links. The
approach first reconstructs the Markov probability transition
matrix using neighbours of nodes and finds similarity index
Improved Random Walk with Restart IRWR). Second, it di-
vides networks into snapshots and builds a sample set using
the IRWR index. Finally, a deep belief network-based pre-
dictive model is constructed to extract the time-domain char-
acteristics from the sample set. The model helps to achieve
superior link prediction performance. The experimental re-
sult performed on Cambridge and Reality dataset shows that
IRWR-DBN is more stable and accurate than the similarity-
based index (CN, AA, LP, Katz, TLP) [191].

Our review includes relavant studies using Neural Net-
work to refine Opportunistic Networks routing. ML-BBFT
[125] is a ML-based approach proposed for enhancing for-
warding techniques in social OpploT networks. The tech-
nique leverages bonding-based forwarding and ML techniques
to optimize data transmission within these dynamic networks.
Game Theory-based Energy Efficient Routing (GTEER) [164]
introduces a routing protocol based on game theory princi-
ples to improve energy efficiency in Opportunistic Networks.
The proposed protocol optimizes next-hop selection based
on context information and energy considerations by fram-
ing routing decisions as a cooperative game. Ant-Router
[161] is an efficient routing protocol inspired by ant colony
optimization for social Opportunistic Networks. The Ant
Router protocol utilizes ant routing strategies to dynamically
adapt to changing network conditions, enhancing routing ef-
ficiency in social opportunistic environments. Lastly, BRNN-
LP[113]is a Bayesian Recurrent Neural Network-based Link
Prediction protocol. This method predicts future links in
dynamic networks, aiding in more efficient routing and re-
source allocation.

We have also surveyed relevant studies using fuzzy logic
in Opportunistic Networks. EEFLPOR [122] is an Energy-
Efficient Fuzzy Logic Prediction-based Opportunistic Rout-
ing protocol for wireless sensor networks. By integrating a
fuzzy-based prediction method with current and future node
parameters, EEFLPOR optimises relay node selection to en-
hance network lifetime and throughput. FCSG [92] is a Fuzzy-
based Check-and-Spray Geocast routing protocol for Oppor-
tunistic Networks. FCSG improves the delivery ratio com-
pared to existing geocaching protocols using a fuzzy con-
troller and a Check-and-Spray mechanism. In [42], two fuzzy
logic-based systems, INSS1 and INSS2, are proposed for
IoT node selection in Opportunistic Networks. These sys-
tems consider parameters like node distance to task, remain-
ing energy, buffer occupancy, and inter-contact time to se-
lect optimal IoT nodes. In [43], an integrated intelligent sys-
tem for IoT device selection and placement in Opportunistic
Networks is presented. This system combines fuzzy logic
and genetic algorithms to optimise IoT device selection and
placement, addressing intermittent connectivity challenges
and enhancing network performance.
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Table 6
Comparative Analysis of Neural Network and Fuzzy Logic in Opportunistic Networks.
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suitable path

message passing

The Comparative Analysis of Neural Networks and Fuzzy
Logic in Opportunistic Networks is presented in Table 6.

4.5. Unsupervised Learning in Opportunistic
Routing Protocol
Unsupervised Learning is to infer patterns from the dataset
where only input data is available without labeled data or

output variables. So, specific techniques are mainly used
for discovering the unknown structure of the data. Unsu-
pervised Learning is mainly grouped into clustering and as-
sociation problems. Clustering methods divide the dataset
into different groups based on similar characteristics. Asso-
ciation mining learns the rules of the frequently occurring
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event together from a dataset [189].

4.5.1. K-means Algorithm-based Protocols

We have explored protocols leveraging the K-means al-
gorithm, a popular clustering technique, to partition data into
clusters based on similarity, facilitating efficient routing de-
cisions in Opportunistic Networks.

TL-QL [209]: In this paper, the authors investigate the
use of ML techniques to improve the load balancing, spec-
trum allocation, and energy-saving perspectives in the op-
portunistic mobile broadband network for various dynamic
scenarios. The k-means algorithm divides the cell into clus-
ters that improve spectrum reuse and interference mitigation.
The k-means algorithm is incorporated with Q-learning for
transfer learning and resource allocation for cell selection.
The clustered Q-learning improves transfer learning by in-
creasing cell overlapping. The experiment performed in the
Ljubljana city scenario shows significant improvement in re-
source allocation at high traffic levels in the various area of
a cell. Furthermore, it improves energy-saving, load, and
spectrum optimization, enhancing network capacity.

KRop [156]: KRop routing protocol applies an unsuper-
vised learning method of ML. It uses the k-means clustering
algorithm to train protocol using the network features and
make the decision to select the next hop. The KRop proto-
col trained using four-node features available buffer space,
encountered nodes, distance with the destination node, suc-
cessfully delivered the message by the node. After feature
identification, the protocol generates the clusters using k-
means. It consists of three phases.1) Initializing cluster 2)
Cluster assignment 3) Cluster movement. After completion
of this process k different clusters created with neighboring
nodes. The evaluation function is used to decide on selecting
the best cluster. Once the best cluster identifies the message
is passed to each node belonging to that cluster. In this sce-
nario, to limit the number of messages, the Spray and Wait
[174] protocol is used for message passing. In the future, this
work can consolidate with energy consumption and security
issues.

IBR-DTN [167]: In this paper, an ML classifier is ap-
plied to predict the neighbor node that is most likely to de-
liver the message to the destination. The classifier utilized
historical information on the node’s movement. e.g., People
moving towards the office use the same route every day. The
three renowned ML classifiers, namely Naive Bayes, Deci-
sion Tree, and K-Nearest Neighbor, were used to learn this
pattern. The classifiers accommodate the diversity of con-
ditions like entering or leaving a node, heavy traffic, region,
and time, and work dynamically. The proposed approach,
IBR-DTN, also uses k-means clustering algorithms to deter-
mine the region where nodes visit frequently. It helps make
an efficient forwarding decision based on grouping similar
nodes. The empirical result shows that IBR-DTN can predict
the network traffic and determine suitable neighbor nodes to
transfer the message to a destination successfully.

Clustering Approach [129]: The article proposed the un-
supervised ML-based approach to improve routing in the

Opportunistic Networks of vehicles. The method detects
the community between nodes (vehicles) for effective oppor-
tunistic communication. The proposed hierarchical routing
algorithm combines three strategies: metric of detecting Op-
portunistic Networks’ geographical sectors, metric of build-
ing communication community from Spatio-Temporal data
with a time constraint, and metric of node’s local encounter.
These metrics are used to make a message-forwarding deci-
sion. In the testing phase, when two nodes encounter, they
exchange messages based on previously extracted knowledge
of finding the local community. Comparing the proposed
approach with Epidemic [182] shows a significant improve-
ment in the number of messages delivered. In the future, re-
searchers focused on comparing the proposed approach with
the existing social-based method Bubble-Rap [74].

4.5.2. Density-based Clustering Protocols

We have studied protocols utilising density-based clus-
tering algorithms such as DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) to identify clusters
of nodes with high density, enabling effective routing in re-
gions of varying network density.

OPSCAN [56]: This paper presents an algorithm named
Opportunistic Spatial Clustering of Applications with Noise
(OPSCAN) to cluster the nodes based on the geographic lo-
cation. The proposed algorithm applies Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) to
find clusters and distinguish noise from the dataset. The
clusters are generated using a density-based clustering al-
gorithm that determines geographic areas with more sim-
ilarity between nodes and higher density. The nodes be-
longing to low-density areas are marked as noise. These
nodes can be utilized as carrier nodes due to their higher
mobility. OPSCAN can recognize the arbitrary shape cluster
that provides better identification of clusters. Given the sim-
ulation results, OPSCAN outperforms DBSCAN [59] and
ST-DBSCAN [24] and efficiently creates clusters. The OP-
SCAN algorithm is evaluated on Microsoft Research Geo-
Life dataset [210].

V2V cooperative approach [192]: In this paper, the au-
thors propose a framework to identify hazardous spots on
roads. The framework combines mobile sensing and vehicle-
to-vehicle (V2V) Opportunistic Networks. Hidden Markov
Model (HMM) based data processing is proposed to correct
faults in identifying hazardous spot detection. The Viterbi
algorithm [133] helps vehicles to make periodic decisions
concerning the state of the road using sensing data. The
proposed system consists of three processes: hazardous spot
identification using mobile sensing. Second is HMM-based
data processing, and finally, V2V collaborative data process-
ing. The buses, cars, and taxis are equipped with sensor de-
vices with computational resources or smartphones that can
be used for mobile sensing. The result shows that the pro-
posed approach can enhance the accuracy of detecting haz-
ardous spots for vehicles in the community that avoid acci-
dents.
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4.5.3. Diverse Learning-based Protocols

We have covered diverse protocols employing innovative
techniques such as Gaussian Mixture Models, Hierarchical
Clustering, and other unconventional approaches to address
routing challenges in Opportunistic Networks.

GMMR [184]: OpploTs network is very similar to the
Opportunistic Networks. So, the identical routing design
can apply to both networks. The OpplOT network is part
of the Internet of Things network where device connectivity
is infrequent, and routing is a highly complex problem. This
paper proposed the ML-enabled routing protocol, GMMR,
which uses Gaussian Mixture Models. GMMR consolidates

the benefit of context-free and context-aware protocols. GMM-

based soft clustering approach is suited for a given network,
so GMM is preferred over k-means that follow hard cluster-
ing. GMMR protocol works in two phases: GMMR training
and GMMR routing. In the training phase, it collects feature
data, trains GMM using that data, and assigns each node a
cluster label. In the routing phase, first, it identifies the desti-
nation cluster of a message and sends the message to nodes
belonging to that cluster. Finally, a message is sent to the
destination node encountered. The GMM algorithm can be
replaced with density-based spatial clustering or agglomer-
ative hierarchical clustering for more extensive analysis.
We have surveyed several notable contributions in unsu-
pervised learning within Opportunistic Networks. Density-
Based Spatial Clustering of Applications with Noise (DOIDS)
[204] is an intrusion detection scheme for opportunistic rout-

ing in Underwater Wireless Sensor Networks (UWSNs). DOIDS

uses the DBSCAN clustering algorithm to identify poten-
tial malicious nodes by analyzing energy consumption, for-
warding behavior, and link quality. DOIDS enhances de-
tection accuracy (up to 15% improvement in various sce-
narios) while minimizing false positives and addressing se-
curity concerns in large-scale UWSNs. DBSCAN-R [135]
is a context-aware routing protocol for Opportunistic Net-
works, leveraging the DBSCAN clustering algorithm. By
utilizing four dynamic network parameters as features for
clustering, DBSCAN-R outperforms benchmark algorithms
such as Epidemic [182], ProPHET [107], and MaxProp [25]
routing in terms of delivery success rate, average hop count,
overhead ratio, and messages dropped, thereby demonstrat-
ing its effectiveness in automating routing decisions in Opp-
Nets.

The Hierarchical Learning-based Sectionalized Routing
paradigm for pervasive communication and Resource effi-
ciency (HiLSeR) [19] is a scheme for opportunistic routing
in IoT networks. By utilizing hierarchical learning for topol-
ogy sectionalization and routing decisions, HiLSeR com-
bines controlled flooding and opportunistic sector-based trans-
mission. HiL.SeR achieved an average successful delivery

rate of 0.911, outperforming existing protocols by up to 88.33%.

It demonstrates HiLSeR’s enhanced performance and sus-
tainability in IoT network communication. The Opportunis-
tic Fuzzy Clustering Routing (OFCR) [6] protocol proposes
to enhance routing decisions in intermittent [oT networks.

to represent node characteristics and their associations bet-
ter. OFCR shows improved performance and consistency
across various simulation parameters.

The Comparative Analysis of Unsupervised Learning in
Opportunistic Networks is presented in Table 7.

5. Real-world Implementation and Validation
of ML Techniques in Opportunistic
Networks

We analysed the practical deployment and validation of
ML techniques within Opportunistic Networks. It showcases
impact across diverse application domains such as UAVs,
entertainment, health and wellbeing, and sensor data col-
lection. Additionally, it addresses significant challenges, in-
cluding the lack of user incentivisation mechanisms and the
absence of viable business models for service providers. We
addressed the potential role of ML techniques in mitigating
these challenges.

5.1. Deployment Scenarios and ML Impact

Opportunistic Networks have various applications, such
as UAV networks, entertainment delivery, health monitor-
ing, and sensor data collection, where ML techniques play
a crucial role [22] [119] [47]. We have described how ML
facilitate such real deployments.

5.1.1. UAV Networks

ML techniques are critical in optimising UAV flight paths
and energy consumption, enabling efficient data exchange
between UAVs and ground stations in real-world applica-
tions such as surveillance missions or disaster response op-
erations.

To optimise UAV flight paths, ML techniques analyse
historical flight data, environmental factors, and mission ob-
jectives. These algorithms ensure efficient navigation and
optimise fuel consumption by continuously learning and adapt-
ing to dynamic environments [14]. ML enables UAVs to
adaptively navigate in dynamic environments, responding to
changing conditions such as weather patterns, airspace re-
strictions, or unexpected obstacles [110]. This adaptabil-
ity is crucial for real deployments where mission parame-
ters may change rapidly, ensuring safe and efficient data col-
lection or delivery. ML techniques facilitate efficient data
exchange between UAVs and ground stations by optimising
communication protocols and transmission strategies. By
analysing network conditions and data traffic patterns, ML
techniques assure timely and reliable data delivery, even in
challenging environments with limited bandwidth or inter-
mittent connectivity.

5.1.2. Entertainment Applications
ML-powered recommendation systems revolutionise en-
tertainment consumption by delivering personalised multi-

media content opportunistically, even in bandwidth-constrained

environments [69].

OFCR employs a three-tiered intelligent fuzzy clustering paradigm
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Table 7
Comparative Analysis of Unsupervised Learning in Opportunistic Networks.
Year Protocol Category Functionality Advantages Comtzared Dataset Val_:_(ie;tllon
Unsupervised k-means is
. . Improves
and integrated with
Reinforcement Q-learning for spectrum Transfer Ljubljana
2015  TL-QL [209] . reuse and . . Custom
Learning: spectrum, load . Learning [208] scenario
interference
K-means, and energy A
. Lo mitigation
Q-Learning optimization
k-means is
Unsupervised used to cluster  Select the best ~ PRoPHET [107], Map based ONE
2018 kRop [156] Learning: the nodes cluster based ProWait [48], Movement Simulator [90]
K-means based on on destination HBPR [49] Model [90] 1mu
common feature
Urlisel;'?:ir:gséd Gaussian SIIL\Jlsetse:z: KNNR [160], Map based
2018  GMMR [184] Gaussian Mixture Models approach so HBPR [49], Movement . ONE
Mixture helps to create referred over MLPROPH [157], Model [90] Simulator [90]
clusters P PROPHET [107]
Model k-means
Supervised
and ML classifier Able to
Unsupervised predicts the predict network
IBR-DTN Learning: neighbor traffic pattern, Epidemic [182],
2018 [167] Naive Bayes, node based reduces the Prophet [107] Zebranet [53] CORE [3]
Decision on historical network
Tree, K-NN, information overhead
K-means
Community Makes the
Clustering Unsupervised based routing message Map based ONE
2019 Approach Learning: using forwarding Bubble Rap [74] Movement Simulator [90]
[129] K-means unsupervised decision based Model [90]
learning on community
Destiny-based Used to
Unsupervised clustering predict the Microsoft
2020 OPSCAN Learning: identifies the mobility of DBSCAN [59], Research Custom
[56] Density based  arbitrary-shaped nodes in ST-DBSCAN [24] Geol ife !
Clustering cluster in high and low Dataset [210]
network density areas
HMM based -
Unsupervised algorithm Efficiently
V2v Lel;llj'nir\:I : re resintls spatial detects the EM and workin
2020 cooperative Armng: presents sp hazardous Viterbi rking MATLAB [1]
Density based relationship . car project [128]
approach [192] . spots on Algorithm [133]
Clustering between the roads

road condition

ML techniques analyse user preferences based on his-
torical viewing behaviour, ratings, and feedback to gener-
ate personalised recommendations. By continuously learn-
ing from user interactions, these algorithms adapt to evolv-
ing preferences and ensure relevant content delivery in real
time [109]. ML-based recommendation systems consider
network conditions such as bandwidth availability, latency,
and congestion levels to optimise content delivery. By dy-
namically adjusting streaming bitrates or prefetching content
segments, these systems ensure seamless playback and min-
imise buffering interruptions to enhance user experience. ML
considers contextual factors such as device type, location,
and time of day to tailor content recommendations. By un-
derstanding user context, these algorithms deliver relevant
content that aligns with users’ preferences and viewing habits,
fostering engagement and satisfaction.

5.1.3. Health and Wellbeing Monitoring

ML processes opportunistically collected sensor data to
detect anomalies and predict health-related events, enabling
personalized interventions and enhancing healthcare outcomes
[78].

ML techniques analyze sensor data streams from wear-
able devices or medical sensors to detect deviations from
standard physiological patterns [116]. These algorithms trig-
ger timely interventions or alerts by identifying anomalies
indicative of health risks or emergencies, improving patient
safety and outcomes. ML techniques forecasts future health
events based on historical data and contextual information.
By predicting potential health issues in advance, these algo-
rithms enable proactive interventions and personalized treat-
ment strategies, optimizing healthcare delivery and resource
allocation. ML-driven health monitoring systems deliver
personalized interventions tailored to individual patient needs
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and preferences. By analyzing patient data and treatment
outcomes, these systems recommend targeted interventions
such as medication adjustments, lifestyle changes, or remote
consultations, empowering patients to manage their health
proactively [173].

5.1.4. Sensor Data Collection

ML techniques optimise data collection using Opportunis-
tic Networks by dynamically adapting transmission strate-
gies based on network availability and user demand.

ML techniques analyse real-time sensor data and net-
work conditions to adjust transmission strategies dynami-
cally. These algorithms ensure efficient data collection while
minimising energy consumption and network congestion by
prioritising critical data packets, optimising routing paths,
and adjusting transmission power. ML-driven sensor net-
works are scalable and resilient to environmental changes
and network disruptions. By leveraging adaptive algorithms
and decentralised decision-making, these networks can au-
tonomously reconfigure themselves to maintain connectiv-
ity and data integrity in challenging conditions, ensuring re-
liable data collection in real-world deployments [63]. ML
techniques optimise resource allocation in sensor networks
by balancing data collection requirements, energy constraints,
and user demand. By intelligently scheduling data transmis-
sions, allocating bandwidth and energy resources, and opti-
mising data aggregation, security and privacy of user’s data
maximise the efficiency and effectiveness of sensor data col-
lection in various application scenarios [50] [142].

ML techniques enable real deployments and real-life ap-
plications across diverse domains. By leveraging advanced
algorithms and data-driven insights, ML-powered systems
optimise performance, enhance user experience, and improve
the performance of Opportunistic Networks.

5.2. Leveraging ML to enhance the adoption of
Opportunistic Networks

Opportunistic Networks face significant challenges in in-
centivizing user participation and establishing sustainable
business models for service providers. There is a possibility
of broad adoption of Opportunistic Networks by providing
solutions to these issues using ML techniques.
5.2.1. Lack of User Incentivization Mechanisms

Users in Opportunistic Networks need more incentives
to actively participate in data sharing or resource provision-
ing due to concerns regarding privacy, resource consump-
tion, or perceived benefits. ML techniques personalise in-
centives based on user preferences, behavior, and contextual
factors [117] [76]. By analysing historical data and user in-
teractions, ML techniques provide incentives to align with
users’ interests and motivations, increasing engagement and
participation. ML techniques adapt incentive mechanisms
over time by learning from user responses and feedback. It
dynamically adjusts incentives based on the effectiveness of
previous strategies, maximising user participation while min-
imising resource consumption and costs. ML techniques

analyse user interactions and preferences to recommend rel-
evant content or services, thereby fostering user engagement
and participation. By leveraging similarity metrics and user
feedback, algorithms enhance the relevance and effective-
ness of incentives, increasing user satisfaction and retention.

5.2.2. Lack of Business Models for Service Providers

Service providers face challenges monetising Opportunis-
tic Networks due to the absence of traditional revenue mod-
els and uncertainty regarding service quality and availability
[180]. ML techniques optimise resource allocation, service
provisioning, and pricing strategies in Opportunistic Net-
works. By analysing historical usage patterns, network con-
ditions, and user preferences, ML techniques can dynami-
cally allocate resources and adjust pricing to maximise rev-
enue while ensuring service quality and availability [187].
Predictive analytics models forecast user demand and net-
work conditions, enabling service providers to anticipate mar-
ket trends and adjust their offerings accordingly. Leveraging
ML techniques such as time series analysis and regression,
predictive analytics help service providers make informed
pricing and capacity planning decisions. It maximises prof-
itability and competitiveness in the market. Game theoretic
approaches model the interactions between users and service
providers as strategic games where participants aim to max-
imise utility. By applying game theoretic concepts, ML tech-
niques can design incentive mechanisms that foster collabo-
ration and value creation in Opportunistic Networks ecosys-
tems. These mechanisms incentivise cooperative behaviour
among users and service providers, leading to mutually ben-
eficial outcomes and sustainable business models.

By personalizing incentives, optimizing resource allo-
cation, and facilitating stakeholder collaboration, ML tech-
niques enable the development of viable and sustainable ecosys-
tems where users are motivated to participate actively, and
service providers can monetize their offerings effectively.

5.3. Validating ML-based Solutions in Real-world
with Field Trials and Pilot Projects

Field trials and pilot projects serve as critical compo-
nents in the validation process of ML solutions within Op-
portunistic Networks. Integrating ML into real-world de-
ployments of Opportunistic Networks is an evolving research
domain. Although challenges are associated with implement-
ing ML at scale in Opportunistic Networks, ongoing research
explores its potential across diverse contexts. The pilot projects
for remote health monitoring offer substantial demonstra-
tions of Opportunistic Networks’ real-world deployment [78].
Concurrently, other research focuses on applications like op-
portunistic mobile crowd-sourcing and social networks that
leverage opportunistic principles in real-world experiments
[144] [84]. These real-world deployments provide invalu-
able insights into the usability, acceptance, and performance
of ML techniques under practical constraints.

Field trials and pilot projects allow researchers and prac-
titioners to evaluate the performance of ML techniques in
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scenarios that closely resemble the intended deployment con-
text, considering factors such as network conditions, user
behaviours, and environmental variables [83]. Field trials
provide an opportunity to assess the usability of ML-driven
solutions in real-world settings, focusing on factors such as
user interaction, interface design, and user experience. Pilot
projects enable researchers to evaluate the acceptance and
adoption of ML-driven solutions among end-users, stake-
holders, and other relevant parties [77]. By soliciting feed-
back, conducting surveys, and analyzing user engagement
metrics, researchers can gauge users’ perceived value, util-
ity, and willingness to embrace ML-powered technologies in
their everyday activities [9].

Field trials provide an opportunity to assess the perfor-
mance of ML-driven solutions in real-world conditions, con-
sidering factors such as reliability, scalability, and efficiency.
Researchers can measure key performance indicators, such
as data throughput, latency, and resource utilization, to eval-
uate the effectiveness of ML techniques in achieving their
intended objectives. By observing how ML techniques per-
form under real-world constraints such as limited resources,
network disruptions, and user variability, researchers can iden-
tify potential bottlenecks, vulnerabilities, and areas for opti-
mization, informing iterative development cycles and guid-
ing future research directions.

6. Identification of Research Challenges and
Future Directions

This section discusses the open issues in the field of Op-
portunistic Networks that can be solved using ML techniques.
From the literature review, we found that the researchers
have proposed many solutions in the last decade, but still,
there is scope for improvement that was discussed. This
section helps and motivates new researchers to work in this
up-growing field of networking. Despite the numerous pro-
posed approaches and improvements achieved in the field
of Opportunistic Networks, many open issues need to be
solved. This section identifies the problems that should be

handled by optimised routing in Opportunistic Networks. Fig. 3

shows research challenges and future directions in the area
of Opportunistic Networks.

6.1. Link Prediction

The analysis of social networks recently received signifi-
cant consideration amongst researchers because of its ample
applicability in obtaining social behaviour, Link prediction,
and the likelihood of having a connection between two nodes
in the network that are not directly connected. ML tech-
niques like time series analysis and graph neural networks
hold promise in accurately predicting link formation based
on historical encounter data and network topology [29], [162].
Link prediction is utilised to identify the probability of fu-
ture links between nodes with the help of available network
knowledge, such as node attributes and network topology
[106]. In Opportunistic Networks, if the routing protocol
can predict the node contact pattern, it is used to choose an
appropriate neighbour for forwarding the message. By ac-
curately predicting the node’s position in the future, we can

increase the delivery ratio and reduce the network overhead.
So, can an ML-based routing protocol predict the best for-
warder node for a given destination using Link Prediction?

6.2. Mobility Models

The mobility model presents rules of node mobility and
the way of node movement in Opportunistic Networks. In
the real scenario, the node’s movement is not random. Mov-
ing from one place to another has a regular hourly, daily, or
weekly pattern. The average duration of contact, frequencies
of meetings, and other parameters help reveal human move-
ment and patterns of habits. Few existing protocols use ML
algorithms like reinforcement learning and neural networks
to learn and adapt to node movement patterns based on his-
torical data [106] [159] [89]. By exploiting these features,
we can predict the future encounter of nodes. Can the rout-
ing algorithm efficiently adapt the moving pattern of nodes
using ML techniques?

6.3. Community Detection

The social network of humans is advantageous to making
data-forwarding decisions. Community Detection is used to
learn the features of networks by analysing their composi-
tion. It helps to exhibit and understand the social commu-
nity structure, contact pattern, node movement, and other
network behaviours. ML-based community detection algo-
rithms based on network features like node attributes and
connection patterns are employed to identify groups of nodes
with frequent interactions [64] [211]. By revealing the rel-
evant characteristics of nodes, communication in the social
network helps to trace regular contact patterns between the
nodes. So, how can the routing algorithm’s performance be
improved using community detection?

6.4. Traffic Generation

Network traffic is the volume of data generated across
a network over some time. It is the number of packets and
payloads produced by the actual nodes. The packet genera-
tion speed and the number of nodes in the network can affect
performance. ML techniques like traffic forecasting models
are employed to predict future traffic patterns based on his-
torical data and network conditions [168] [163] [150]. In
Opportunistic networks, the number of encounters between
nodes increases the message passing, eventually increasing
traffic. If message generation is at a rapid rate, it increases
congestion, and nodes drop the messages. So, how does the
routing protocol handle the dynamic behaviour in the case
of a dense and sparse network?

6.5. Security/Privacy

It is essential to provide security and privacy at the inter-
mediate nodes while transmitting the message from source to
destination. It requires a trust management framework while
all the network nodes are not truthful. Machine learning
techniques like anomaly detection and intrusion prevention
systems are used to identify and isolate malicious nodes at-
tempting to disrupt network operations or compromise data
integrity [50] [142]. The framework should offer privacy
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Figure 3: Research Challenges and Future Directions in Opportunistic Networks

protection, data confidentiality, and data integrity. Due to
an inefficient security framework, the malicious node does
not participate in the message-passing process, ultimately af-
fecting network performance. Several routing protocols con-
sider the presence of malicious nodes present in the network.
So, how to secure user data if such nodes are present?

6.6. Selfish Behavior

The nodes not participating in forwarding the message
are called selfish nodes. The nodes do not want to participate
for several reasons, such as malicious data from the other
nodes, low resources (e.g., buffer size, battery, bandwidth),
or not being interested in helping the communities. The
presence of such selfish nodes in Opportunistic Networks
may degrade the entire transmission system. ML algorithms
learn and adapt to node behaviour, offering rewards for par-
ticipation and penalties for non-cooperation. Additionally,
reputation systems based on historical interactions are im-
plemented to identify and isolate selfish nodes, preventing
them from disrupting network operations [171] [172]. Recog-
nising the selfish nodes and strengthening their participation
in the network is profoundly needed, so how do we identify
them and make them participate in the forwarding mecha-
nism?

6.7. Energy Consumption

Energy consumption determines the amount of energy
the network uses to perform tasks such as message trans-
mission, reception, data collection, etc. In the real scenario,
nodes always suffer from the scarcity of power/battery. The
energy-efficient model is a required design for the effective

use of power/battery. ML algorithms like decision trees and
reinforcement learning are used to predict node energy lev-
els and adapt routing strategies accordingly [112] [92] [17].
Since energy efficiency is a prominent issue, the routing pro-
tocols must consider this performance parameter alongside
other conventional metrics. So, how to design an energy-
efficient routing protocol?

6.8. Resource Utilisation

Opportunistic Networks comprise several homogeneous
and heterogeneous resources. There is a significant problem
in scheduling and efficient usage of resources due to the dy-
namic behaviour of Opportunistic Networks. ML techniques
employed to optimise resource utilisation based on real-time
network conditions and node capabilities [34] [176] [45].
The optimal use of resources reduces the likelihood of packet
drop and improves delivery ratio, average latency, and other
parameters. Predicting the node’s workload and resource re-
quirements is even more challenging in a highly dense sce-
nario. So, how to use resources efficiently for various net-
work scenarios?

7. Conclusion

This paper summarizes the evolution of ML technique-
based approaches in Opportunistic Networks and other Ad-
hoc Networks. The article explored the relevant ML ap-
proach and analyzed its performance and impact on Oppor-
tunistic Networks. We have compared the methodology, sim-
ulation tool, dataset, and advantages of the current algorithm
with traditional methods. The comparative analysis of dif-
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ferent approaches provides researchers insight into choos-
ing an appropriate technique based on application. Further-
more, the numerous open issues and opportunities for future
research discussed in the paper encourage the research com-
munity to contribute to the Opportunistic Networks field.
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