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In this article, the fractional-order nonlinear reaction-advection-diffusion equation describing contaminant transport
in groundwater has been solved using shifted Legendre collocation method. The shifted Legendre polynomial is used to
approximate the function. After that the operational matrix for fractional-order derivative in Caputo sense is applied
on it. The shifted Legendre collocation points are employed to obtain a system of nonlinear algebraic equations which
have been solved using Newton method. The application of the said methodology is demonstrated by applying it to
two standard cases. The proposed method is validated by comparing the numerical results with those obtained using
exact solutions through error analyses and the results are given in graphical as well as tabular forms. After the vali-
dation of its efficiency and effectiveness, the proposed numerical scheme is applied on a mathematical model related to
porous media in a fractional order system. The salient feature of this article is the graphical exhibitions of the effects of
fractional-order spatial and time derivatives, and also reaction and advection terms on the solution profile for different
particular cases.
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1. INTRODUCTION

We understand a porous medium as a physical system with voids. These pores are generally filled with fluids like gases
or liquids. Porous media is a very useful concept in several areas of applied sciences like filtration, geomechanics,
construction, material sciences, etc. By porous media we mean a solid which allows a passage of fluids through its
voids and pores. Natural examples of porous media are sand, limestone, etc. Based on structure, porous media can
be further characterized at two different geological levels, i.e., microscopic level and macroscopic level. The former
deals with the expression of structure with the help of degree of interconnection, orientation of pores, etc. whereas
the latter deals with bulk parameters, which have been averaged over scales much larger than the size of pores. Based
on our objective, we can prefer any of the two approaches, but to have a basic understanding of surface phenomena
such as absorption, it is clear that microscopic description is necessary. Several articles are available in the literature
which discuss different models on porous media (Ahmed and Rashed, 2021; Bhrawy and Baleanu, 2013; Chen et al.,
2010; Cui, 2015; Davarzani et al., 2021; Ngondiep, 2022; Qawasmeh et al., 2021; Sohail et al., 2021; Wang et al.,
2021).

1091–028X/23/$35.00 © 2023 by Begell House, Inc. www.begellhouse.com 15



16 Biswas et al.

In most cases, pollutant movement in the subsurface is dominated by advection. It describes the pollutant transfer
by the bulk movement of flowing groundwater. The movement of mass entrained in the flow is referred to as advection.
Solute advection is the movement of dissolved substances due to the movement of the water in which they are
suspended. Advection not only moves mass from one place to another, but it also distributes or scatters the matter.
This happens because the distribution of water velocity is not uniform. The advection diffusion equation describes
the transport of a solute under the combined effects of advection and diffusion. If the chemical being carried through
soil is reactive, its behavior in groundwater is described by a reaction-advection-diffusion equation (RADE). The
reaction term represents the source and the sink term in the advection-diffusion equation. The additional source term
will increase whereas the sink term will lead to reduction in contaminant concentration. Reduction due to degradation
will be zero for the case of conservative contaminant.

A groundwater system or aquifer is a classical example of porous media. Contamination of groundwater is a
severe problem for humans because its decontamination is an extremely difficult and costly affair. The near-surface
or subsurface storage or disposal of waste such as septic tank sludge, grass waste, and industrial wastes is the primary
cause of groundwater pollution. When the contaminants enter the aquatic subsurface environment, they move through
an aquifer along with groundwater. The fate of the contaminant in natural systems like dust pollution, river thermal
pollution, and groundwater contamination may be modeled using a partial differential equation (PDE) and more
particularly, a fractional-order PDE (FPDE) (Das, 2009; Das et al., 2011; Singh et al., 2019). The movement of
pollutants in the groundwater, atmosphere, and surface water can be more accurately modeled mathematically by the
fractional-order reaction-advection-diffusion equation (FRADE).

The spatial and temporal profiles of pollutant concentration in the aquifer can be predicted by solving RADE
with defined boundary and initial conditions. Because of numerous applications in diverse domains, such as physical,
chemical, geological, biological, and financial systems, fractional calculus has received a lot of attention in recent
years. A fractional-order diffusion mathematical model that describes nondiffusive transportation in turbulence of
plasma (Del-Castillo-Negrete et al., 2005) and a nonlinear fractional-order diffusion model for the flow in capillaries
across porous media are just a few examples (Gerolymatou et al., 2006). The mathematical models of physical systems
have been observed to be more precise when fractional calculus is used. In both industry and academia, the use of
the fractional derivative as a tool to construct more stable mathematical models to study the complicated engineering
problems is gaining popularity. When fractional-order derivatives are used instead of integer-order derivatives, a
practical mathematical description of any physical phenomenon based on current and earlier time is produced. The
microscopic dynamics of transportation of mass in porous media is extremely complicated, and the physical events
have peculiar kinetics that the ordinary diffusion equation cannot account for, but the fractional diffusion equation
does.

For contaminant transport in grounwater, fractional-order ADE has shown great prospects in simulating the
physical system in a better way as compared to integral order ADE. It has been reported by many researchers that the
FRADEs are much more effective than integer order RADEs in simulating the flow and transport in porous media
(Ghazal and Behrouz, 2018; Płociniczak, 2015; Zhou and Yang, 2018). For instance, Ghazal and Behrouz (2018) by
comparison with observations concluded that for heterogeneous porous media, FRADEs give more acurate results,
especially for longer transport distances. Moreover, FRADEs simulated the tailing parts of breakthrough curves much
better and accounted for the earlier arrival of tracer. Similarly, Płociniczak (2015) observed better matching of the
results of their time fractional RADE with the experimental outcomes. El-Amin (2021) opined that the fractional mass
conservation equation can represent the nonlinear flux with more accuracy than the first-order linear Taylor series to
account for the related heterogeneity.

The common removal mechanisms in groundwater systems include the presence of microorganisms capable of
biodegrading certain compounds, physical decay, and adsorption of the contaminant on the soil part of the aquifer.
Biodegradation, an important aspect of contaminant flow, may be enhanced to remove contaminants. Adsorption, a
retardation reaction between solute and surface of the porous structure, is an important factor in contaminant move-
ment. Its effects in segregating the hazardous compounds from the groundwater and also slowing the movement of
the compound are remarkable. Solute transport phenomena with nonlinear biodegradation occur in many situations
like contamination of inorganic chemical and metal in soil and groundwater systems (Karapanagioti et al., 2001; Lee
et al., 2021). The contaminant under the condition of nonlinear degradation results into nonlinear differential
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equation in both integer-order and fractional-order systems as described in the following mathematical
model.

As shown in Benson et al. (2000a) and Benson et al. (2000b), for contaminant migration in heterogeneous porous
media and earth surfaces such as natural rivers, the fractional-order form of the RADE is advantageous. To solve the
fractional-order transport equation in disordered semiconductors, fractional-order transport equation within Liouville
equations is examined by Tarasov (2006). Many scholars have contributed to the development of strategies for solving
fractional-order PDEs that are both reliable and efficient. In Jaiswal et al. (2018), a space fractional-order solute
transport system is solved using finite difference method. The fractional-order convection–diffusion equation arising
in underground water pollution is solved using dual Bernstein operators in Sayevand et al. (2022). In Atangana and
Baleanu (2017), the Caputo–Fabrizio derivative is applied to groundwater flow within the confined aquifer. In this
article, the following fractional-order nonlinear RADE is considered:

∂αc

∂tα
= D

∂2βc

∂x2β
+D

∂2βc

∂y2β
− ν1

∂βc

∂xβ
− ν2

∂βc

∂yβ
− λc(1− c), (1)

where0 < α ≤ 1, 0.5 < β ≤ 1, with the initial condition

c(x, y, 0) = Ψ1(x, y), (2)

and boundary conditions
c(0, y, t) = Ψ2(y, t), (3)

∂βc(1, y, t)
∂xβ

= Ψ3(y, t), (4)

∂βc(x,0, t)
∂yβ

= Ψ4(x, t), (5)

∂c(x,1, t)
∂y

= Ψ5(x, t), (6)

wherec is the functionc(x, y, t) ∈ C[0,1] × C[0,1] × C[0,1]; D is the diffusion coefficient; andν1 andν2 are the
velocities of solute transport.∂αc/∂tα, ∂2βc/∂x2β, ∂2βc/∂y2β, ∂βc/∂xβ, and∂βc/∂yβ are all Caputo fractional-
order derivatives ofc(x, y, t). Because exact solutions of nonlinear FPDEs are difficult to obtain, the numerical and
approximate approaches are used to solve these equations. As discussed previously, numerical solutions utilizing
various advanced techniques are beneficial in dealing with nonlinear situations. Since Legendre polynomials satisfy
the orthogonality criterion, the Legendre collocation method with operational matrices is a trustworthy method for
solving nonlinear FPDEs. During the solution of differential equations, the approach employs a truncated orthogo-
nal series. Legendre operational matrices have been generalized to fractional-order derivative by Saadatmandi and
Dehghan (2010).

The following is the arrangement of the article’s structure. The preliminary information related to the shifted
Legendre approximation and operational matrices are presented in Section 2. Section 3 presents the validation of the
mathematical model through two numerical examples. Section 4 contains the solution of the concerned mathematical
equation under prescribed initial and boundary conditions and numerical findings. In Section 5, the work is concluded
in brief.

2. PRELIMINARY INFORMATION

2.1 Approximation of a Function Using Shifted Legendre Polynomial

Legendre polynomials on[−1,1] interval are defined by recursive relations as follows:

l0(x) = 0,
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l1(x) = x,

lm+1(x) =
2m+ 1
m+ 1

xlm(x)− m

m+ 1
lm−1(x), m = 1,2,3, . . . .

A Legendre polynomial can be transformed to a shifted Legendre polynomial by using the transformationt = (x +
1)/2, and as a result the interval[−1,1] will be transformed to[0,1] and the shifted Legendre polynomial becomes

Lm(t) =

m∑
k=0

(−1)m+k (m+ k)!

(m− k)!

tk

(k!)2
, m = 0,1,2, . . . .

2.1.1 One-Dimensional Space

The orthogonality condition of shifted Legendre polynomialsLn(x) in one dimension is∫ 1

0
Li(x)Lj(x)dx =


1

2i+ 1
if i = j

0 otherwise.

Consider a functionc(x) ∈ C[0,1], which is approximated as (Singh and Das, 2019)

c(x) ≈
n∑

k=0

akLk(x), (7)

where

ak = (2k + 1)
∫ 1

0
u(x)Lk(x)dx.

This approximation ofc(x) in matrix notation will be

c(x) ≈ ATψ(x),

where matrixψ(x) of order(n+ 1)× 1 and the coefficient matrixA of order(n+ 1)× 1 are defined as

ψ(x) = [L0(x), L1(x), L2(x), ..., Ln(x)]
T ,

A = [a0, a1, a2, ..., an]
T .

2.1.2 Two-Dimensional Space

Similarly, to extend the approximation in two-dimensional space, the shifted Legendre polynomial of order(n + 1)
can be written as

Lm(x, y) = Li(x)Lj(y),

wherem = (n+ 1)i+ j + 1 andi = 0,1,2, ..., n, j = 0,1,2, ..., n.
Here, the orthogonality condition forLm(x, y) is

∫ 1

0

∫ 1

0
Li1(x)Lj1(y)Li2(x)Lj2(y)dxdy =


1

(2i1 + 1)(2j1 + 1)
, if i1 = i2, j1 = j2,

0, otherwise.

A function c(x, y) ∈ C[0,1]× C[0,1] can be approximated as (Singh and Das, 2019)

c(x, y) ≈
(n+1)2∑
k=0

bkLk(x, y) = B(ψn(x)⊗ψn(y)), (8)
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whereB is the coefficient matrix of order1 × (n + 1)2 andψn(x) ⊗ ψn(y) is the Kronecker product of matrices
ψn(x) andψn(y) of order(n+ 1)2 × 1 defined as

ψn(x)⊗ψn(y) =
[
L0(x)L0(y), ..., L0(x)Ln(y), L1(x)L0(y), ..., L1(x)Ln(y), ..., Ln(x)L0(y), ...,

Ln(x)Ln(y)
]T

,
(9)

and
B = [b0, b1, b2, ..., b(n+1)2]T .

The properties of the Kronecker product and its applications can be found in Brewer (1978) and Zhang and Ding
(2013).

2.1.3 (2+1)-Dimensional Space

Using the preceding definitions we can extend approximation in (2+1)-dimensional space. Here, the orthogonality
condition for the shifted Legendre polynomial is∫ 1

0

∫ 1

0

∫ 1

0
Li1(x)Lj1(y)Lk1(t)Li2(x)Lj2(y)Lk2(t)dxdydt

=


1

(2i1 + 1)(2j1 + 1)(2k1 + 1)
, if i1 = i2, j1 = j2,

k1 = k2,

0, otherwise.

(10)

A function c(x, y, t) ∈ C[0,1]× C[0,1]× C[0,1] can be approximated as (Singh and Das, 2019)

c(x, y, t) ≈ cn,n,n(x, y, t) =
n∑

i,j,k=0

ci,j,kLi,j,k(x, y, t) = (ψn(t))
TC(ψn(x)⊗ψn(y)), (11)

whereC is the coefficient matrix of order(n+1)×(n+1)2,ψn(x) andψn(y) are matrices both of order(n+1)×1,
and(ψn(x)⊗ψn(y)) is the Kronecker product of matricesψn(x) andψn(y) of order(n+ 1)2 × 1, defined as

ψn(x)⊗ψn(y) = [L0(x)L0(y), ..., L0(x)Ln(y), L1(x)L0(y), ..., L1(x)Ln(y), ..., Ln(x)L0(y), ..., Ln(x)Ln(y)]
T .

2.2 Operational Matrices

In this section, we will define an operational matrix of a shifted Legendre fractional-ordered derivative of the vector

ψn(x) as
∂γψn(x)

∂xγ
≈ D(γ)ψn(x), whereD(γ) is given as follows (Saadatmandi and Dehghan, 2010):

D(γ) =



0 0 ... 0
...

...
...

0 0 ... 0∑⌈γ⌉
k=⌈γ⌉ ζ⌈γ⌉,0,k

∑⌈γ⌉
k=⌈γ⌉ ζ⌈γ⌉,1,k ...

∑⌈γ⌉
k=⌈γ⌉ ζ⌈γ⌉,n,k

...
...

...∑i
k=⌈γ⌉ ζi,0,k

∑i
k=⌈γ⌉ ζi,1,k ...

∑i
k=⌈γ⌉ ζi,n,k

...
...

...∑n
k=⌈γ⌉ ζn,0,k

∑n
k=⌈γ⌉ ζn,1,k ...

∑n
k=⌈γ⌉ ζn,n,k


, (12)
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where

ζi,j,k =
2j + 1
hk

j∑
p=0

(−1)i+p+j+k(k + i)!(p+ j)!

k!(i− k)!Γ(k − γ+ 1)(j − p)!(p!)2(k + p− γ+ 1)
.

The first⌈γ⌉ rows ofD(γ) are zero.
Using the preceding definition and results of the article by Brewer (1978), we can compute the fractional partial

order derivative of orderγ > 0 of Kronecker productψn(x)⊗ψn(y) with respect tox, as follows:

∂γ

∂xγ
(ψn(x)⊗ψn(y)) =

∂γψn(x)

∂xγ
⊗ψn(y) +ψn(x)⊗

∂γψn(y)

∂xγ
, (13)

=
∂γψn(x)

∂xγ
⊗ψn(y)

≈ (D(γ)ψn(x))⊗ (Iψn(y))

≈ (D(γ) ⊗ I)(ψn(x)⊗ψn(y)), (14)

and similarly fractional derivative with respect toy gives

∂γ

∂yγ
(ψn(x)⊗ψn(y)) ≈ (I ⊗D(γ))(ψn(x)⊗ψn(y)), (15)

whereI is the identity matrix andD(γ) is operational matrix of fractional-order derivative, and both the matrices are
of order(n+ 1)× (n+ 1).

Figure 1 shows the comparison of the Caputo fractional-order derivative of the functionf(x) = x2.2 when
computed directly using the formula and when computed using the operational matrix of the Caputo fractional-order
derivative given in Eq. (12).

3. NUMERICAL APPLICATION

This section deals with the validation of the proposed method by applying it to two standard test cases where exact
solutions are known. For the comparison of the approximate and the exact solutions, let us define theL2 error in
0 ≤ x ≤ 1 as

||c(x,1,1)− cn,n,n(x,1,1)||2 =

√∫ 1

0
|c(x,1,1)− cn,n,n(x,1,1)|2dx, (16)

FIG. 1: Plots of comparison between exact and approximate values of Caputo fractional-order derivative forf(x) = x2.2 at
α = 0.7
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wherec(x, y, t) andcn,n,n(x, y, t) represent the exact and approximate solutions, respectively.
The rate of convergence (ρ) is calculated using the formula

ρ = lim
k→∞

||ck+1,k+1,k+1(x,1,1)− c(x,1,1)||2
||ck,k,k(x,1,1)− c(x,1,1)||2

. (17)

TheL∞ error in0 ≤ x ≤ 1 is defined as

||c(x,1,1)− cn,n,n(x,1,1)||∞ = Sup{|c(x,1,1)− cn,n,n(x,1,1)| : x ∈ [0,1]}. (18)

Example 1.Let us consider the following fractional-order RADE (Singh et al., 2022)

∂αc

∂tα
= D

(
∂βc

∂xβ
+

∂βc

∂yβ

)
− ν

(
∂c

∂x
+

∂c

∂y

)
− λc(1− c), 0 < α < 1, 1 < β < 2, (19)

wherec is a function inc(x, y, t) ∈ C[0,1]× C[0,1]× C[0,1] with initial condition

c(x, y, 0) =

(
1+ exp

(
1√
6

(
x− y√

2

)))−2

, (20)

and boundary conditions

c(0, y, t) =

(
1+ exp

(
1√
6

(
− y√

2

)
− 5t√

6

))−2

, (21)

c(1, y, t) =

(
1+ exp

(
1√
6

(
1− y√

2

)
− 5t√

6

))−2

, (22)

c(x,0, t) =

(
1+ exp

(
1√
6
(x)− 5t√

6

))−2

, (23)

c(x,1, t) =

(
1+ exp

(
1√
6

(
x− 1√

2

)
− 5t√

6

))−2

, (24)

which has the exact solution (Singh et al., 2022)

c(x, y, t) =

(
1+ exp

(
1√
6

(
x− y√

2

)
− 5t√

6

))−2

. (25)

To validate our proposed numerical method, it is applied to the preceding problem, and we have calculated theL2

andL∞ normed errors between the exact and obtained numerical solutions. The results are shown through Table 1
for n = 7, 8, 9, and 10,D = 0.5 = ν, λ = 1 atα = 0.7, andβ = 1.7.

It is seen thatL2 andL∞ normed errors defined by Eqs. (16) and (18) decrease asn increases. Table 1 clearly
shows that the obtained numerical results by our proposed method are accurate even for small values ofn.

For rate of convergence let us define

ρn =
||cn+1,n+1,n+1(x,1,1)− c(x,1,1)||2

||cn,n,n(x,1,1)− c(x,1,1)||2
.

After computation, we getρ7 = 0.1716, ρ8 = 0.1121, andρ9 = 0.0214. Hereρ7 > ρ8 > ρ9 andρ7, ρ8, ρ9 ∈ (0,1).
Thus we get a sequence{ρn} such thatρn → 0 for sufficiently largen. Hence we may conclude that the

convergence of our proposed method is superlinear. Figure 2 also justifies the superlinear convergence of the method.
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TABLE 1: L2 andL∞ errors between the approximate and the exact solutions
for n = 7, 8, 9, and 10 for Example 1

n ||c(x,1,1)− cn,n,n(x,1,1)||2 ||c(x,1,1)− cn,n,n(x,1,1)||∞
7 1.72555× 10−6 1.05859× 10−5

8 2.96011× 10−7 2.53432× 10−6

9 3.3182× 10−8 9.57486× 10−7

10 7.1009× 10−10 8.32516× 10−8

FIG. 2: Plot of rate of convergence:ρn againstn for n = 7, 8, and 9 in Example 1

Example 2.The proposed method is also applied to the following problem (Pandey et al., 2021) to show its accuracy
and efficiency.

∂αc(x, y, t)

∂tα
= (0.5)(∆2c(x, y, t)) + c(x, y, t)2(1− c(x, y, t)) + f(x, y, t), (26)

where
f(x, y, t) = exy(1.91116t1.1 + exyt4(−1+ exyt2)− 0.5t2(x2 + t2)), (27)

with initial condition
c(x, y, 0) = 0, (28)

and boundary conditions
c(0, y, t) = t2, (29)

c(x,0, t) = t2, (30)

c(1, y, t) = eyt2, (31)

and
c(x,1, t) = ext2. (32)

The exact solution is given by Pandey et al. (2021)

c(x, y, t) = exyt2. (33)

TheL2 andL∞ normed errors between the obtained results and the exact results are calculated forn = 6, 7, 8, and
9, forα = 0.9, which are displayed through Table 2. It is clear from Table 2 that our proposed numerical method is
efficient even for smaller values ofn.
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TABLE 2: L2 andL∞ errors between the approximate and the exact
solutions forn = 6, 7, 8, and 9 for Example 2

n ||c(x,1,1)− cn,n,n(x,1,1)||2 ||c(x,1,1)− cn,n,n(x,1,1)||∞
6 3.8141× 10−8 4.39728× 10−8

7 1.17892× 10−9 1.2757× 10−9

8 3.24816× 10−11 1.20232× 10−10

9 3.6379× 10−13 6.12022× 10−11

As in the previous example, we getρ6 = 0.0309, ρ7 = 0.02755, ρ8 = 0.01119, and again notice thatρ6 >
ρ7 > ρ8 andρ6, ρ7, ρ8 ∈ (0,1). Thus a sequence{ρn} is obtained withρn → 0 asn becomes large, which clearly
concludes that the proposed method is superlinear, which is also justified by Fig. 3.

It is also clear from Table 2 that the errors are much lower as compared to the method applied in the article
(Pandey et al., 2021). Therefore, we may claim that our proposed method is superior than the existing method given
in Pandey et al. (2021).

4. SOLUTION OF THE PROBLEM

After validation of the proposed numerical method on two existing problems, we employed it to solve the considered
fractional-order RADE model [Eq. (1)] under the following initial condition

c(x, y, 0) = 1, (34)

and boundary conditions
c(0, y, t) = t, (35)

∂βc(1, y, t)
∂xβ

= 0, (36)

∂βc(x,0, t)
∂yβ

= 0, (37)

∂c(x,1, t)
∂y

= 0. (38)

FIG. 3: Plot of rate of convergence:ρn againstn for n = 6, 7, and 8 in Example 2
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To solve this model let us first approximate the unknown functionc(x, y, t) defined in Eq. (11) as

(ψn(t))
TC(ψn(x)⊗ψn(y)).

After substituting the approximation of the unknown functionc(x, y, t) and using an operational matrix of the
fractional-order derivative defined in Eq. (12), and taking everything on the left-hand side and adding the initial
condition to this resulting equation, we get

(ψn(t))
T (D(α))C(ψn(x)⊗ψn(y))−D(ψn(t))

TC(D(2β) ⊗ I)(ψn(x)⊗ψn(y))

−D(ψn(t))
TC(I ⊗D(2β))(ψn(x)⊗ψn(y))

+ ν1(ψn(t))
TC(D(β) ⊗ I)(ψn(x)⊗ψn(y))

+ ν2(ψn(t))
TC(I ⊗D(β))(ψn(x)⊗ψn(y))

+ λ(ψn(t))
TC(ψn(x)⊗ψn(y))(1− (ψn(t))

TC(ψn(x)⊗ψn(y))) = 0, (39)

and the approximation of the boundary conditions are given by

(ψn(t))
TC(ψn(0)⊗ψn(y))− t = 0, (40)

(ψn(t))
TC(D(β)

n ⊗ I)(ψn(1)⊗ψn(y)) = 0, (41)

(ψn(t))
TC(I ⊗D(β)

n )(ψn(x)⊗ψn(0)) = 0, (42)

(ψn(t))
TC(I ⊗D(1)

n )(ψn(x)⊗ψn(1)) = 0. (43)

We will now collocate the Eq. (39) at points(xi, yj , tk) and Eqs. (40) to (43) at points(xi, tk) and at points(yj , tk),
wherexi, yj are Legendre–Gauss–Lobatto (LGL) points of theLn−1(x) andLn−1(y), respectively, wheretk are
the zeroes of the shifted Legendre polynomialLn+1(t). After the collocation, the equations are converted to a linear
system of algebraic equations from which the unknown matrixC can be obtained by using the Newton method.
Substituting the matrixC, the approximate solution ofc(x, y, t) will be obtained.

Figure 4 depicts the movement of solute concentration due to variations ofβ = 0.7, 0.8, 0.9, and 1.0 at fixed
t = 1 andα = 0.8, while Fig. 5 represents the movement of solute concentration due to variations ofβ = 0.7, 0.8,
0.9, and 1.0 at fixedt = 1 andα = 0.9, and Fig. 6 represents the movement of solute concentration forβ = 0.7, 0.8,
0.9, and 1.0 at fixedt = 1 andα = 1.0. Hence from Figs. 4, 5, and 6, we observe that for a fixedα the concentration
of solution increases asβ varies from integer order to fractional order. In each case it is found that asβ (the order of
spatial derivative) decreases, the solute concentration increases.

FIG. 4: Plots of solute concentration at fixedt = 1 forα = 0.8 andβ = 0.7, 0.8, 0.9, and 1.0
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FIG. 5: Plots of solute concentration at fixedt = 1 forα = 0.9 andβ = 0.7, 0.8, 0.9, and 1.0

FIG. 6: Plots of solute concentration at fixedt = 1 forα = 1.0 andβ = 0.7, 0.8, 0.9, and 1.0

Figure 7 is the plot of the movement of solute concentration forα = 0.8, 0.9, and 1.0 at fixedt = 1 andβ = 1.0.
Hence we can observe that for a fixedβ = 1.0, the solute concentration decreases asα varies from integer order to
fractional order. These results demonstrate not only the role of the order of the derivatives in describing effectively
the pollutant transport in porous media but also the need to employ the FRADE instead of RADE to study the fate of
pollutant transportation in such systems.

Figure 8 shows the variations of solute concentration atβ = 0.8 = α, ν1 = 0.3, ν2 = 0.6, D = 1, andt = 1
for the valuesλ = −1, 0, and 1. Figure 9 represents the variation of solute concentration atβ = 0.8 = α, ν1 = 0.6,
ν2 = 0.3, D = 1, t = 1 for λ = −1, 0, and 1. Figure 10 represents the plot of solute concentration atβ = 1.0 = α,
ν1 = 0.3, ν2 = 0.6, D = 1, t = 1 for λ = −1, 0, and 1. Figure 11 represents the plot of solute concentration at
β = 1.0 = α, ν1 = 0.6, ν2 = 0.3, D = 1, t = 1 for λ = −1, 0, and 1. Hence from Figs. 8, 9, 10, and 11, we can
observe that for a fixed value ofα andβ, the solute concentration is less for the system with sink term (λ = 1), as
compared to the system with conservative contaminant (λ = 0) and for the system with source term (λ = −1). This
is physically justified that more damping will be found in the presence of the sink term (λ = 1) as compared to the
source term (λ = −1) as well as for the case of conservative system (λ = 0).
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FIG. 7: Plots of concentration of solution at fixedt = 1 forβ = 1.0 andα = 0.8, 0.9, and 1.0

FIG. 8: Plots of concentration of solution at fixedt = 1 forα = 0.8 = β, ν1 = 0.3,ν2 = 0.6,D = 1, andλ = −1, 0, and 1

FIG. 9: Plots of solute concentration at fixedt = 1 forα = 0.8 = β, ν1 = 0.6,ν2 = 0.3,D = 1, andλ = −1, 0, and 1
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FIG. 10: Plots of solute concentration at fixedt = 1 forα = 1.0 = β, ν1 = 0.3,ν2 = 0.6,D = 1, andλ = −1, 0, and 1

FIG. 11: Plots of solute concentration at fixedt = 1 forα = 1.0 = β, ν1 = 0.6,ν2 = 0.3,D = 1, andλ = −1, 0, and 1

5. CONCLUSION

In the present scientific contribution the nonlinear space-time fractional-order RADE problem is solved by using a
numerical method known as the shifted Legendre collocation method with the help of the operational matrices for
derivatives. The accuracy and efficiency of the method are confirmed through error analyses of the results obtained
between the proposed approach and the existing analytical method. Then, the proposed methodology is employed to
solve the contaminant transport in a groundwater problem defined by FRADE. For variations in space and time, the
effect caused by the advection term on the solution profile is visually shown along with the impact of order of the
spatial and time derivatives on the solution profile. Another focus of the research is the explanation of the damping
of the solution profile as the system approaches to fractional order from standard order. The authors believe that the
current contribution will be useful to scientists and engineers working in the field of transport in porous media.
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