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Abstract

In the present article the spatio-temporal fractional-order nonlinear reaction-advection-diffusion equation is solved using the
eural network method (NNM). Shifted Legendre orthogonal polynomials with variable coefficients are used in the network’s
onstruction. The characteristics of a fractional-order derivative are used to determine the loss function of a neural network. The
ermissible learning rate range is discussed in detail, assuming that the Lipschitz hypothesis is accurate for the nonlinearity in
eaction term. We have demonstrated the application of the NNM on two numerical examples by utilizing the neural networks
hich had been repeatedly trained on the training set. In other words, we have validated the effectiveness of the method for

uch problems. The effects of reaction term and also the degree of nonlinearity in reaction and advection terms on the solution
rofile are visualized through graphical presentations for specific test cases.
2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

eserved.

eywords: Fractional-order reaction-advection-diffusion equation; Neural network method; Artificial neural network loss function; Damping

1. Introduction

The fractional order integrals and derivatives were developed practically at the same time when the integer
alculus was developed. Fractional calculus has attracted a lot of attention recently due to its wide applications
n a variety of fields including financial systems, physical, chemical, geological and biological systems [3,4]. No
pproach provides an exact solution to the fractional-order differential equation (FDE). However, the nonlinear
ractional order partial differential equations (FPDEs) have attracted special attentions of the scientific commu-
ity [2,5,11,16,19,20,24,25]. The time memory or historical inheritance of a fractional derivative is its most notable
haracteristic [9], because of which, fractional derivatives have extensive applications in diverse domains [10]. FPDE
an be used to represent a variety of natural systems, including the thermal pollution of river systems, atmospheric
ollution and groundwater pollution. The equation that describes the flows in porous media is solved to determine
he velocities of the transport medium. Although the flow equations are nonlinear, diffusion and advection are
he most crucial factors. The advection–diffusion equation describes how a solute is transported when advection

∗ Corresponding author.
E-mail address: sdas.apm@iitbhu.ac.in (S. Das).
https://doi.org/10.1016/j.matcom.2022.12.032
0378-4754/© 2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.

http://www.elsevier.com/locate/matcom
https://doi.org/10.1016/j.matcom.2022.12.032
http://www.elsevier.com/locate/matcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matcom.2022.12.032&domain=pdf
mailto:sdas.apm@iitbhu.ac.in
https://doi.org/10.1016/j.matcom.2022.12.032


C. Biswas, A. Singh, M. Chopra et al. Mathematics and Computers in Simulation 208 (2023) 15–27

t
a
e
u
o
u
g
e
n
p
I
o
p
B
n
w
F
v
B
F
p
b

m
s
F

n
i
r
w
o
f
o
a
t
t

n

and diffusion are acting together. reaction-advection-diffusion equations, another type of chemical equation, are
shown to exist when the chemical being carried through soil is reactive. In general, fractional differential models
do not have any analytical solution, or if they do, the analytical solutions are challenging to calculate because
of the involvement of many complicated functions in such models. Therefore, it is crucial to put more effort in
research related to FDEs for their numerical solutions. Nonlinear FDEs are typically difficult to solve precisely,
necessitating the use of numerical methods and methods of approximation. Researchers in this field have primarily
suggested three numerical procedures to effectively solve the corresponding FDEs: the finite element method (FEM),
the spectrum method (SM) and the finite difference method (FDM). In order to solve various types of linear and
nonlinear ordinary FDEs, Raja et al. [14] have developed a feed-forward artificial neural network (ANN)-based
method. He demonstrated the usefulness of this approach along with the limitation that this approach provides less
accuracy while dealing with difficult nonlinear FDEs.

The ANN based approach for numerical solutions to FDEs was examined by [12] to show the effectiveness of
hese networks. The effectiveness of this technique was demonstrated by comparing with the analytical solution
nd a number of numerical techniques which are currently in use. Improvement of the performance in thermal and
nvironmental processes using ANN with conformable transfer function is done in [22]. An overview of real-world
ses for ANN in fractional calculus can be found in [26]. The trial solutions of models are built from a combination
f adjustable and non-adjustable elements. PDEs, linked with ODE systems, and individual ODEs can be solved
sing the said technique. In [6], the authors thought about using an iterative approach to solve FDEs and used the
eneralized sigmoid function as the cost function. Wei et al. [27] suggested that the time-fractional Fokker–Planck
quation can be solved using a neural network. In [8], a complete description of radial basis function in neural
etwork algorithms to solve various kinds of differential equations has been provided. The sequential quadratic
rogramming (SQP) algorithm is used to effectively update the weights of the network via restricted optimization.
n [15], the authors have created a new computing method employing fractional neural networks to solve fractional-
rder Bagley–Torvik equations with initial conditions. In recent years, it is seen a growth of crucial dynamical
roblems, dependent on time, space, or both, showing behaviour of the fractional-order. The fractional Adams–
ashforth approach was described in its right form in [1]. Functional link neural network (FLNN), a higher order
eural network, was used to represent linear and nonlinear delay fractional optimal control problems (DFOCPs)
ith mixed control-state constraints in [7]. Using a novel method based on ANN, the approximate solutions of
DEs were investigated in [28]. Neural network approach being a part of Artificial intelligence (AI) has become
ery popular due to its ability to do incredible tasks like finding the patterns in data which otherwise is very difficult.
. Shiri et al. in [18] proposed an adaptive gradient descent method based on NNM to minimize energy functions.
or image processing, speech recognition, manufacturing virtual assistants like Alexa, training machines, this can
erform more efficiently than a human being. ANN is also performing in those areas very efficiently, where human
eings could not even think of it even one or two decades ago.

In present paper, we are putting forth a numerical method to solve the nonlinear time–space fractional PDEs. This
ethod, consisting of Legendre polynomials, is motivated by the literary work [13], which employed the NNM to

olve an integer order differential equation. Here we have made an effort to employ the method to solve a nonlinear
PDE, which is first of its kind.

The benefit of the studied method is its primary concept which is based on training the networks by using a small
umber of sample points on the solution area. It is noticed that the accuracy improves with more training. However
t was very challenging to deal with the accuracy of the method with larger number of training set. The NNM is
egarded as superior to the FEM, FDM or any other numerical method for solving the nonlinear PDEs in integer as
ell as fractional-order systems. This is because NNM can improve the calculation accuracy by encrypting the grid
r by adding interpolating nodes. In contrast to the grid-based method, which can only find approximate solutions
or grid points, NNM can obtain the approximate solutions for all of the points in the interval from a small sample
f points FRADEs are in general solved using numerical methods. The scientific community is trying to develop
nd employ new and advanced techniques to achieve the more accurate solutions of FRADEs and also to reduce
he effort in obtaining these solutions. Hence, state of the art methods developed in recent years such as NNM need
o be tested for such problems. This led us to attempt the present study.

Here an endeavour is made to apply the NNM based on Legendre polynomials to investigate the following
onlinear time–space fractional order reaction-advection-diffusion equation (FRADE) given by

∂αw(x, t)
=

∂βw(x, t)
+ νwη(x, t)

∂w(x, t)
+ λR(w), 0 < α < 1, 1 < β < 2, (1)
∂tα ∂xβ ∂x
16
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under the prescribed initial condition and boundary conditions as

w(x, 0) = Ψ1(x), 0 ≤ x ≤ X, (2)

w(0, t) = Ψ2(t), 0 ≤ t ≤ T, (3)

∂w(1, t)
∂x

= Ψ3(t), 0 ≤ t ≤ T, (4)

where η ∈ N , the set of all natural numbers and ν is the advection coefficient.
The reaction term is considered here as R(w) = w(x, t)(1 − wη(x, t)) which fulfils the Lipschitz criterion:

|R(w1) − R(w2)| ≤ L|w1 − w2|, ∀w1, w2.

he remaining portion of this article is structured as follows. A few helpful definitions are introduced in Section 2,
long with Legendre polynomials and their shifted counterparts. A thorough explanation of NNM is given in
ection 3. For the aim of demonstrating the efficacy of the concerned method, two numerical examples are given

n Section 4. Section 5 discusses the results of the present work. The last section, Section 6, concludes the article.

. Preliminary information

.1. Definition

In the Caputo sense, the partial derivative of fractional-order α of a function w(x, t) with respect to x is defined
as [17]

c
0 Dα

x w(x, t) =

⎧⎪⎨⎪⎩
1

Γ (n − α)

∫ x
0 (x − ξ )n−α−1 ∂nw(ξ, t)

∂ξ n
dξ, if n − 1 < α < n,

∂nw(x, t)
∂xn

, if α = n ∈ N .

(5)

2.2. Legendre polynomial

Legendre polynomials on [−1, 1] are defined by the following recursive relations given as [13]

l0(x) = 1,

l1(x) = x,

li+1(x) =
2i + 1
i + 1

xli (x) −
i

i + 1
li−1(x), i = 1, 2, 3, . . . ;

nalytical form of Legendre polynomial is given as

L i (x) =

i∑
k=0

(−1)k(i + k)!
(i − k)!

(1 − x)k

2k(k!)2 , i = 0, 1, 2, . . . ;

he shifted Legendre polynomial of degree i on the interval [0, X ] is therefore given by the explicit analytical form

L X,i (x) =

i∑
s=0

(−1)i+s(i + s)!
(i − s)!

x s

X s(s!)2 , i = 0, 1, 2, . . . ; (6)

nd the boundary values of L X,i (x) are

L X,i (0) = (−1)i ,
L X,i (X ) = 1.

17
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3. Neural network method

In this section, we will talk about how NNM works to solve nonlinear FRADE. The qth test result is denoted
y [13]:

wq (x, t) =

Mx∑
i=o

Mt∑
j=o

uq
i, j L X,i (x)LT, j (t), (7)

here L X,i (x) and LT, j (t) are the shifted Legendre polynomials stated in previous section. So, the function
q (x, t) defined in (7) is a continuous function on [0, 1] × [0, 1]. The network is depicted in Fig. 3. The neural

etworks change the weights to reduce the loss function using the unknown weights uq
i, j , i ∈ {0, 1, . . . , Mx } and

j ∈ {0, 1, . . . , Mt } those are first allocated at random. Model (1) will be approximated by inserting the test solution
q (x, t) with unknown weights uq

i, j and iteratively training to change the unknown weights uq
i, j .

The basis functions LT, j (t), and L X,i (x) have their time and spatial derivatives determined from the model (1).
o begin, let us compute the time derivative. For convenience, let us consider

T (t) = [LT,0(t), LT,1(t), . . . , LT,Mt (t)],

here LT, j (t) is defined in (6).
ase 1: If α = 1, we have

dT (t)
dt

=
d
dt

[LT,0(t), LT,1(t), . . . , LT,Mt (t)] = [0, L ′

T,1(t), . . . , L ′

T,Mt
(t)], (8)

here

L ′

T, j (t) =

j∑
s=1

(−1) j+s( j + s)!
( j − s)!

x s−1

X s(s!)(s − 1)!
, j = 1, 2, . . . , Mt . (9)

ase 2: For α ∈ (0, 1), we have
c
0 Dα

t T (t) = [0, Lα
T,1(t), . . . , Lα

T,Mt
(t)], (10)

here c
0 Dα

t is the Caputo derivative and it is defined as

c
0 Dα

t LT, j (t) = Lα
T, j (t) =

j∑
s=0

(−1) j+s( j + s)!t s−α

( j − s)!(s!)T sΓ (s + 1 − α)
, j = 1, 2, . . . , Mt . (11)

ow we will calculate spatial derivatives of

L(x) = [L X,0(x), L X,1(x), . . . , L X,Mx (x)]T .

or first order derivative of L(x),
d L(x)

dx
= [L ′

X,0(x), L ′

X,1(x), . . . , L ′

X,Mx
(x)]T . (12)

imilarly for second order derivative of L(x),

d2L(x)
dx2 = [L ′′

X,0(x), L ′′

X,1(x), . . . , L ′′

X,Mx
(x)]T , (13)

and for β ∈ (1, 2), we get
c
0 Dβ

x L(x) = [Lβ

X,0(x), Lβ

X,1(x), . . . , Lβ

X,Mx
(x)], (14)

here c
0 Dβ

x is Caputo derivative and it is defined by

c
0 Dβ

x L X,i (x) =

i∑
s=0

(−1)i+s(i + s)!x s−β

(i − s)!(s!)X sΓ (s + 1 − β)
. (15)

he parameter for the training set is chosen on uniform grid points as xm =
(m − 1)X
(Mm − 1)

, tn =
(n − 1)T
(Mn − 1)

, where

m ∈ {1, 2, . . . , M } and n ∈ {1, 2, . . . , M }.
m n

18



C. Biswas, A. Singh, M. Chopra et al. Mathematics and Computers in Simulation 208 (2023) 15–27

N

f

C

C

Substituting (7) into the model (1) and using Eqs. (10), (12) and (14), the errors erq
m,n at sample points (xm, tn)

for non-initial states m ∈ {2, 3, . . . , Mm − 1} and n ∈ {2, 3, . . . , Mn} are calculated as

erq
m,n =

Mx∑
i=0

Mt∑
j=0

uq
i, j L X,i (xm)Lα

T, j (tn) −

Mx∑
i=0

Mt∑
j=0

uq
i, j Lβ

X,i (xm)LT, j (tn)

− ν
( Mx∑

i=0

Mt∑
j=0

uq
i, j L X,i (xm)LT, j (tn)

)η( Mx∑
i=0

Mt∑
j=0

uq
i, j L ′

X,i (xm)LT, j (tn)
)
− λ(

Mx∑
i=0

Mt∑
j=0

uq
i, j L X,i (xm)LT, j (tn))

+ λ
( Mx∑

i=0

Mt∑
j=0

uq
i, j L X,i (xm)LT, j (tn)

)η+1
. (16)

While for initial condition (2), n = 1 and m ∈ {1, 2, . . . , Mm} and we have

erq
m,1 =

Mx∑
i=0

Mt∑
j=0

uq
i, j L X,i (xm)LT, j (t1) − Ψ1(xm). (17)

For boundary condition (3), m = 1 and n ∈ {2, . . . , Mn}. Therefore,

erq
1,n =

Mx∑
i=0

Mt∑
j=0

uq
i, j L X,i (x1)LT, j (tn) − Ψ2(tn), (18)

and for boundary condition (4), m = Mm and n ∈ {2, . . . , Mn} so that

erq
Mm ,n =

Mx∑
i=0

Mt∑
j=0

uq
i, j L ′

X,i (xMm )LT, j (tn) − Ψ3(tn). (19)

The qth error matrix is defined by Eq
= (erq

m,n)Mm×Mn . The Frobenius matrix norm of Eq matrix is defined by

∥Eq
∥

2
F =

1
2

Mm∑
m=1

Mn∑
n=1

(erq
m,n)2. (20)

ext, the weight adjustment formula [13] is given by

uq+1
i, j = uq

i, j + ∆uq
i, j , (21)

or q = 0, 1, 2, . . . , N , with

∆uq
i, j = −ρ

∂∥Eq
∥

2
F

∂uq
i, j

= −ρ

Mm∑
m=1

Mn∑
n=1

erq
m,n

∂erq
m,n

∂uq
i, j

.

ase 1: When m ∈ {2, 3, . . . , Mm − 1} and n ∈ {2, 3, . . . , Mn}, we get

∂erq
m,n

∂uq
i, j

= L X,i (xm)Lα
T, j (tn) − Lβ

X,i (xm)LT, j (tn) − ν
( Mx∑

i=0

Mt∑
j=0

uq
i, j L X,i (xm)LT, j (tn)

)η(L ′

X,i (xm)LT, j (tn)
)

− νη
( Mx∑

i=0

Mt∑
j=0

uq
i, j L X,i (xm)LT, j (tn)

)η−1(L X,i (xm)LT, j (tn)
)( Mx∑

i=0

Mt∑
j=0

uq
i, j L ′

X,i (xm)LT, j (tn)
)

− λ
(
L X,i (xm)LT, j (tn)

)
+ λ(η + 1)

( Mx∑
i=0

Mt∑
j=0

uq
i, j L X,i (xm)LT, j (tn)

)η(L X,i (xm)LT, j (tn)
)
.

ase 2: When n = 1 and m ∈ {1, 2, . . . , Mm}, we obtain

∂erq
m,1
q = L X,i (xm)LT, j (t1),
∂ui, j

19



C. Biswas, A. Singh, M. Chopra et al. Mathematics and Computers in Simulation 208 (2023) 15–27

C

n

A

T

T
t

t

4

t

E

Case 3: When m = 1 and n ∈ {2, 3, . . . , Mn}, we find

∂erq
1,n

∂uq
i, j

= L X,i (x1)LT, j (tn).

ase 4: When m = Mm and n ∈ {2, 3, . . . , Mn}, we have

∂erq
Mm ,n

∂uq
i, j

= L ′

X,i (xMm )LT, j (tn).

Hence,

∆uq
i, j = −ρ

Mm−1∑
m=2

Mn∑
n=2

erq
m,n

{
L X,i (xm)Lα

T, j (tn) − Lβ

X,i (xm)LT, j (tn)

− ν
( Mx∑

i=0

Mt∑
j=0

uq
i, j L X,i (xm)LT, j (tn)

)η(L ′

X,i (xm)LT, j (tn)
)

− νη
( Mx∑

i=0

Mt∑
j=0

uq
i, j L X,i (xm)LT, j (tn)

)η−1(L X,i (xm)LT, j (tn)
)( Mx∑

i=0

Mt∑
j=0

uq
i, j L ′

X,i (xm)LT, j (tn)
)

− λ
(
L X,i (xm)LT, j (tn)

)
+ λ(η + 1)

( Mx∑
i=0

Mt∑
j=0

uq
i, j L X,i (xm)LT, j (tn)

)η(L X,i (xm)LT, j (tn)
)}

− ρ

Mm∑
m=1

erq
m,1

(
L X,i (xm)LT, j (t1)

)
− ρ

Mn∑
n=2

erq
1,n

(
L X,i (x1)LT, j (tn)

)
− ρ

Mn∑
n=2

erq
Mm ,n

(
L ′

X,i (xMm )LT, j (tn)
)
.

Initial values of weights u0
i, j for i = 0, 1, 2,... , Mx and j = 0, 1, 2,... , Mt can be chosen at random. The maximum

umber of training allowed is N and the learning rate of the neural network is ρ.

lgorithm.

1. Construct sample points (xm, tn), where m = 1, 2, . . . , Mm , and n = 1, 2, . . . , Mn .
2. Generate the weights u0

i, j for i = 0, 1, 2, . . . , Mx and j = 0, 1, 2, . . . , Mt at random.
3. Calculate the Frobenius matrix’s norm Eq , q ≤ N .
4. Calculate the weights’ increase ∆uq

i, j .
5. Adjust the weights’ uq

i, j in accordance to the relation (21).
6. Take a rest if ∥Eq

∥F < ϵ or training time q < N . Go to Step 3 if not.
7. Network test.

he theorem below discusses the learning rate ρ of NNM.

heorem ([13]). Assume that the parameter settings for the neural networks for model (1) are given by spatio-
emporal neurons Mx ×Mt and the number of sample points are Mm ×Mn . If the Lipschitz condition with parameter
L is satisfied by the reaction term R(w) and the constant associated with the Lipschitz parameter L and reaction
erm R(w) is MR,L > 0, then in order to guarantee that the error function reduces with practise, should satisfy

0 < ρ <
1 +

√
Mm Mn

M2
R,L Mm Mn Mx Mt

.

. Numerical application

This section focuses on validating the suggested approach by employing it to solve two well-known standard
est cases.

xample 1. Let us consider the following FRADE [21] as

∂αw(x, t)
=

∂βw(x, t)
+ w(x, t)

∂w(x, t)
+ λw(x, t)(1 − w(x, t)), (22)
∂tα ∂xβ ∂x
20



C. Biswas, A. Singh, M. Chopra et al. Mathematics and Computers in Simulation 208 (2023) 15–27

a

w

w

i
s

r
N
d
t

E

Table 1
Frobenius norm of error matrix for Example 1 at
different number of training sets.

N Error

10,000 2.607 × 10−4

20,000 5.1217 × 10−5

30,000 9.8995 × 10−6

40,000 1.6785 × 10−6

Fig. 1. Comparison of numerical solution of Example 1 for N = 10,000, N = 20,000, N = 30,000 and N = 40,000 with the exact solution
t x = 1.

here w(x, t) is a continuous function on [0, 1] × [0, 1] with initial condition

w(x, 0) =
1
2

+
1
2

tanh
( x

4

)
, (23)

and boundary conditions

w(0, t) =
1
2

+
1
2

tanh
(5t

8

)
, (24)

∂w(1, t)
∂x

=
1
8

sech2(1
4

(
1 +

5t
2

))
, (25)

hich has the exact solution [21] at α = 1, β = 2 and λ = 1 as

w(x, t) =
1
2

+
1
2

tanh
(1

4

(
x +

5t
2

))
. (26)

This example represents a nonlinear model which is particularly challenging to solve. The goal of this example
s to evaluate the precision of NNM when solving a nonlinear model. The following parameters are used to
et up the model for spatial interval X = 1, time interval T = 1, η = 1, learning rate ρ = 5 × 10−5,

Mx = Mt = Mm = Mn = 5. We can see from Table 1 that as number of training sets is increased, the error
educes and the accuracy of NNM improves. The comparison of the numerical solutions estimated by employing
NM with different number of training data points and exact solution is shown in Fig. 1. The graph perfectly
emonstrates that increased number of training sets leads to enhanced numerical accuracy and also demonstrates
hat there is good agreement between the exact and numerical solutions.

xample 2. Let us consider the following FRADE [23] given by

∂αw(x, t)
=

∂βw(x, t)
+ w2(x, t)

∂w(x, t)
+ w(x, t)(1 − w2(x, t)), (27)
∂tα ∂xβ ∂x
21
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Fig. 2. Comparison of numerical solution of Example 2 for N = 10,000, N = 20,000, N = 30,000 and N = 40,000 with the exact solution
t x = 0.

Table 2
Frobenius norm of error matrix for Example 2, at
different number of training sets.

N Error

10,000 4.0862 × 10−4

20,000 5.8519 × 10−5

30,000 8.57706 × 10−6

40,000 1.1286 × 10−6

where w(x, t) is a function in C[0, 1] × C[0, 1] with initial condition

w(x, 0) =

√
1
2

+
1
2

tanh
( x

3

)
, (28)

nd boundary conditions

w(0, t) =

√
1
2

+
1
2

tanh
(10t

9

)
, (29)

∂w(1, t)
∂x

=

sech2(1
3

(
1 +

10t
3

))
6
√

2

√
1 + tanh

(1
3

(
1 +

10t
3

)) , (30)

which has the exact solution [23] at α = 1, β = 2 and λ = 1 as

w(x, t) =

√
1
2

+
1
2

tanh
(1

3

(
x +

10t
3

))
. (31)

As in previous example, this example also aims to demonstrate how NNM solves a nonlinear model accurately
or η = 2 for the model (1). The model is configured using the parameters viz., spatial interval X = 1, time interval

T = 1, and learning rate ρ = 5 × 10−5, Mx = Mt = Mm = Mn = 5. Table 2 demonstrates that as number
f training sets is extended, the error decreases and NNM accuracy increases. Fig. 2 depicts the comparison of
he exact solution and numerical results for different numbers of training sets. The figure clearly shows that more
umber of training sets result in higher numerical accuracy. The agreement between the numerical and exact results
s also demonstrated in Fig. 2.
22
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Fig. 3. Neural network structure.

Fig. 4. Plots of concentration of the solute at fixed t = 0.5 for α = 0.6, β = 1.6, 1.7, 1.8, 1.9, 2, λ = −1 and ν = 0.6 where training set
N = 30,000.

. Application of NNM to solve the considered nonlinear FRADE

This section takes the following initial condition and boundary conditions into consideration as it attempts to
olve the nonlinear FRADE given in (1).

w(x, 0) = x2, 0 ≤ x ≤ 1, (32)

w(0, t) = 0, 0 ≤ t ≤ 1, (33)

∂w(1, t)
∂x

= e−t , 0 ≤ t ≤ 1. (34)

Our goal is to use the validated numerical method based on NNM to solve the model (1) with initial condition (32)
and boundary conditions (33) and (34) for different particular cases. Fig. 4 shows the variations of solution for
fixed α = 0.6 and β = 1.6, 1.7, 1.8, 1.9, 2 and advection coefficient ν = 0.6, at λ = −1 whereas Fig. 5 depicts
he nature of solution for α = 1 and β = 1.6, 1.7, 1.8, 1.9, 2 and ν = 0.6 at λ = −1. The graph shows that
he concentration of the solute drops as the order of the spatial derivative β moves from the fractional-order to
he standard order. The solute travels a shorter distance in the soil column when β= 2 (standard order case) as
ompared to a fractional-order system, which is physically justified. Fig. 6 shows the solutions for fixed β = 1.6

nd α = 0.6, 0.7, 0.8, 0.9, 1 and advection coefficient ν = 0.6 at λ = −1 and Fig. 7 depicts the nature of solution

23
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a
h

Fig. 5. Plots of concentration of the solute at fixed t = 0.5 for α = 1, β = 1.6, 1.7, 1.8, 1.9, 2, λ = −1 and ν = 0.6 where training set
N = 30,000.

Fig. 6. Plots of concentration of the solute at fixed t = 0.5 for β = 1.6, α = 0.6, 0.7, 0.8, 0.9, 1, λ = −1 and ν = 0.6 where training set
N = 30,000.

Fig. 7. Plots of concentration of the solute at fixed t = 0.5 for β = 2, α = 0.6, 0.7, 0.8, 0.9, 1, λ = −1 and ν = 0.6 where training set
N = 30,000.

t fixed β = 2 and α = 0.6, 0.7, 0.8, 0.9, 1 and ν = 0.6 at λ = −1. These graphical representations demonstrate
ow the solute covers more length as the order of the time derivative α goes from fractional-order to standard order.
24



C. Biswas, A. Singh, M. Chopra et al. Mathematics and Computers in Simulation 208 (2023) 15–27

F
ν

i
β

o
(
t
s

6

s
s
t
i
e
o
t
o
t

Fig. 8. Plots of concentration of the solute at fixed t = 0.5 for α = 0.6, β = 1.6, η = 1, 2, 3 and ν = 0.6 where training set N = 30,000.

Fig. 9. Plots of concentration of the solute at fixed t = 0.5 for α = 1, β = 2, η = 1, 2, 3 and ν = 0.6 where training set N = 30,000.

igs. 8 and 9 depict the solution profiles at fixed β = 1.6, α = 0.6 and β = 2, α = 1, respectively for λ = −1,
= 0.6 and η = 1, 2, 3. These graphical results show that the solute covers less distance in soil column with

ncrease in the order of nonlinearity in the reaction term. Fig. 10 shows the numerical solution obtained at fixed
= 2 and α = 1 at λ = −1, 0, 1 and ν = 0.6. It is observed that for the fixed values of α and β, the concentration

f the solute is less for the system with sink term (λ = −1), as compared to the system with conservative contaminant
λ = 0) and for the system with source term (λ = 1). This is physically justified that more damping will be found in
he presence of sink term (λ = −1) as compared to the source term (λ = 1) as well as for the case of conservative
ystem (λ = 0). It is noticed in all the graphs that the nature of the solution is similar for each case.

. Conclusion

The nonlinear FRADE studied in this article is an attempt to determine its approximate solution under the
pecified initial and boundary conditions using NNM. This method includes training using a limited number of
ample points in order to determine the weights of neurons. The trained neural network is then utilized for obtaining
he solutions for the PDEs under unknown conditions. The applicability of the method is demonstrated by employing
t to two test cases where exact solutions are known. Then the NNM is utilized to solve a FRADE. The results
xplains the concentration of solution profile decreases when the time derivative of the system approaches a standard
rder from the fractional order. The most crucial finding of the article is that, as the spatial order derivative decreases,
he solute travels a shorter distance in the soil column for the standard order case (β = 2) as compared to a fractional-
rder system. As a result, the concentration of solute will cover a longer soil column length, which is evident from

he visual representations of the data. The successful implementation of NNM for solving FRADE as done in the
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Fig. 10. Plots of concentration of the solute at fixed t = 0.5 for α = 1, β = 2, λ = 1, 0, −1 and ν = 0.6 where training set N = 30,000.

resent work opens doors for future investigations on suitable basis functions for additional boundaries, like the
obin boundary or the Neumann boundary. After achieving the outstanding results while applying on the nonlinear

ime–space FRADE, the authors are confident to apply the proposed method to handle the nonlinear FRADE in two
imensional case and also solving many such nonlinear FPDEs under the prescribed Robin or Neumann boundary
onditions having physical relevance. Moreover there is significant scope of upgrading the proposed method NNM
o increase the accuracy, normalization and dropout of the method which will be taken care in near future during
andling the nonlinear problems in fractional as well as integer order systems.
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