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Abstract 

The expansion and contraction of myocytes is responsible for pumping of the 
blood in heart required for circulation of blood in the blood vessels in human 

body. This expansion and contraction of myocytes depends on calcium 
signaling in myocytes which is achieved by diffusion of calcium, out flux of 

calcium through pump, influx of calcium through leak and buffering mechanism 
in the cardiac myocytes. Here a two dimensional finite element simulation of 
calcium regulation mechanism in cardiac myocytes is developed. Various 

processes like calcium diffusion, influx due to leak, out flux due to pump and 
excess buffer concentration are incorporated here. Boundary conditions have 

been framed according to physiology of the cell. The coaxial circular elements 
have been used to solve reaction diffusion equation using finite element method. 
The numerical results have been used to understand the effect of excess buffers, 

pump and leak on calcium distribution in myocytes. 

Keywords: Cardiac myocytes, reaction diffusion equation, excess buffer, 

SERCA pump, leak, finite element method 

 

1. INTRODUCTION 

The heart consists of cardiac myocytes, which are primary cells responsible for the 
functioning of heart. The expansion and contraction of myocytes takes place in the heart 

to pump the blood into arties and regulate the blood circulation in the blood vessels. 
The expansion and contraction of myocytes depends on regulation of calcium 
distribution in the myocytes. The process of regulation of expansion and contraction of 

myocytes and calcium distribution in myocytes are still not well understood. It is 
necessary to understand calcium distribution in myocyte to understand the function of 

heart. The specific calcium distribution which takes place in myocytes which is 
responsible for expansion and contraction of myocytes. Various components like 
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calcium diffusion, pump, leak, source influx and buffers are involved in this calcium 

signaling in myocytes.  

The concentration dependent binding of Ca2+ to buffers serves as an indicator of the 

concentration of free calcium in intracellular measurements. The intracellular binding 
proteins bind with calcium ion which results into the contraction of cardiac myocytes. 
The separation of bonded proteins from calcium ion results into the expansion of 

cardiac myocytes. SERCA pumps transport the Ca2+ against its electro chemical 
gradient. Leak receives the Ca2+ that comes from the sarcolema reticulum (SR).Within 

the SR Ca2+ maintains the high capacity and low efficiency of Ca2+ binding proteins. 
They maintain the balances of Ca2+ ions through active and passive process. [Bhargava 
and Pardasani, 2011; Smith, Keizer et. al. 1998] Attempts are reported in the literature 

for the study of calcium regulation in neuron cell, astrocyte cell, fibroblast cell, oocyte 
cell etc. [Bhargava and Pardasani, 2011; Jha and Adlakha, 2014; Jha, Adlakha and 

Mehta, 2014; Kotwani, Adlakha and Mehta, 2013; Panday and Pardasani, 2013; Panday 
and Pardasani, 2014; Tewari and Pardansi, 2010; Tewari and Pardansi, 2013; Tewari 
and Pardansi, 2008; Tripathi and Adlakha, 2011]  But very few attempts are reported 

in literature for the study of calcium distribution in myocytes. [Backx et. al. 1989; Luo 
and Rudy, 1994; Luo and Rudy, 1994b; Michailova et. al. 2002; Shannon et. al. 2004] 

Most of studies reported on calcium distribution in myocytes are experimental. [Luo 
and Rudy, 1994; Luo and Rudy, 1994; Michailova et. al. 2002; Shannon et. al.2004].  
But few attempts are reported on the study of the effect of source influx, buffer, leak 

and pump on calcium distribution in myocytes. [Backx et. al. 1989; Smith et. al. 1998]  
In the present study a mathematical model, for a two dimensional steady state calcium 

distribution in cardiac myocytes is developed under excess buffering approximation. 
The important parameters like buffers, diffusion coefficients, out flux due to SERCA 
pump and influx due to leak has been incorporated in the model. Finite element method 

is employed to understand the effect of biophysical parameters and processes on 
calcium distribution in myocytes. 

 

2. MATHEMATICAL FORMULATION 

Considering association reaction between  𝐶𝑎2+ and buffer,  

2 (1)
k

k
Ca B CaB





    

In equation (1), B represents free buffer, 𝐶𝑎𝐵 represents  𝐶𝑎2+ bound buffer. 𝑘+and 𝑘− are association and dissociation rate constants, respectively. By assuming reaction 

of calcium with buffer follows mass action kinetics, which gives the change in 
concentration of calcium, free buffer and calcium bound buffers as the following system 

of equations [Backx et. al., 1989; Luo and Rudy, 1994a; Luo and Rudy, 1994b] 

2

(2)
d Ca

R J
dt

      
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 
(3)

d B
R

dt
  

 
(4)

d CaB
R

dt
   

where the common reaction term R, is given by 

   2 (5)R k Ca B k CaB        

and J represents 𝐶𝑎2+ influx. Equations (2) to (5) are extended to include multiple 

buffers and the diffusive movement of free 𝐶𝑎2+, 𝐶𝑎2+ bound buffer and 𝐶𝑎2+ free 

buffer. By assuming, Fick’s diffusion the system of reaction diffusion equations are 

written as, [Backx et. al., 1989] 

2

2 2 (6)Ca i
i

Ca
D Ca R J

t




          
 

   2 (7)
i

i
B i i

B
D B R

t


  
  

   2 (8)
i

i
CaB i i

CaB
D CaB R

t


  
  

where the reaction term, Ri  is given by 

   2 (9)i i i i iR k Ca B k CaB        

Here, i is an index over 𝐶𝑎2+ buffers. 𝐷𝐶𝑎 , 𝐷𝐵𝑖  , 𝐷𝐶𝑎𝐵𝑖   are diffusion coefficients of 

free 𝐶𝑎2+ , bound calcium and free buffer respectively. 

Since 𝐶𝑎2+ has a molecular weight that is small in comparison to most 𝐶𝑎2+ binding 

species, the diffusion constant of each mobile buffer is not affected by the binding of 𝐶𝑎2+  that is 𝐷𝐵𝑖   =𝐷𝐶𝑎𝐵𝑖  =𝐷𝑖. [Backx et. al., 1989] Substituting this in equation (7) and 

(8) and on summation it gives 

     

   
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And 

      2 (11)i i i i i iT
R k Ca B k B B         

where 

      (12)i i iT
B CaB B   

Thus, [𝐵𝑖]𝑇 remains uniform for all times. (Bhargava and Pardasani, 2011; Tripathi and 

Adlakha, 2011) Thus, the following equations are obtained for the diffusion of 𝐶𝑎2+, 

   

      

2

2 2

2

2

(13)

(14)

(15)

Ca i
i

i
i i i

i i i i i iT

Ca
D Ca R J

t

B
D B R

t

where

R k Ca B k B B




  

         


  



     



 

In the excess buffer approximation (EBA), equations (6) to (8) are simplified by 
assuming that the concentration of free 𝐶𝑎2+buffer [𝐵𝑖], is high enough such that its 

loss is negligible. [Bhargava and Pardasani, 2011; Tripathi and Adlakha, 2011]   

The association and dissociation rate constants for the bimolecular association reaction 
between 𝐶𝑎2+ and buffer can be combined to obtain a dissociation constant, Ki. 

/ (16)i i iK k k   

The concentration of 𝐶𝑎2+ is necessary to cause 50% of the buffer to be in 𝐶𝑎2+ bound 

form. To show this consider the steady state of equations (6) to (8) in the absence of 
influx (J=0).  Setting the left hand sides of equation (7) and (8) to zero gives [Bhargava 
and Pardasani, 2011; Tripathi and Adlakha, 2011] 

   
2

(17)
i i T

i
i

K B
B

K Ca 




   

 

and 
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 2

2
(18)

i T
i

i

Ca B
CaB

K Ca




 
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   

 

 

where  [𝐶𝑎2+]∞ is the “background”. And [𝐵𝑖]∞ and [𝐶𝑎𝐵𝑖]∞ are the equilibrium 

concentrations of free and bound buffer with respect to index i. In these expression Ki 
is the dissociation rate constant of buffer i. Note that higher values for Ki imply that the 

buffer has a lower affinity for  𝐶𝑎2+ and is less easily saturated. In this case, the 
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equation for the diffusion of  𝐶𝑎2+  becomes, 

   

2

2 2

2 2 (19)

Ca

i i
i

Ca
D Ca

t
k B Ca Ca J



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


        

        
 

Incorporating out flux Jpump due to SERCA pump and in flux Jleak due to leak in equation 
for two dimensional steady state case the equation (19) in polar cylindrical coordinates 
is given by  

   

 
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


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    
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 


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Here Vleak, Vpump and Kpump represents leak rate, serca pump rate and dissociation rate of 

serca pump respectively. [Smith et.al., 1998] 

To solve reaction diffusion equation (20) of calcium concentration appropriate 

boundary conditions must be supplied. The reasonable boundary condition for this 
simulation is uniform background 𝐶𝑎2+ profile of [𝐶𝑎2+ ]∞ = 0.1 𝜇𝑀. It is required that 

buffer far from the source to remain in equilibrium with 𝐶𝑎2+  at all times. Thus the 

boundary condition on the boundary away from the source is given by [Bhargava and 
Pardasani, 2011; Tripathi and Adlakha, 2011; Jha, Adlakha and Mehta, 2014] 

 

2 2

, 0
lim (21)
r

Ca Ca


 

 
        

At the source, it is assumed that influx takes place and therefore the boundary condition 
is expressed as, [Bhargava and Pardasani, 2011; Tripathi and Adlakha, 2011; Jha, 

Adlakha and Mehta, 2014] 

2

,
lim 2 (22)Ca Car

Ca
D r

r 
 



 

      
  
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We define an influx of free 𝐶𝑎2+ at the rate Ca  by Faraday’s law, Ca
Ca

I
zF

   where 

ICa is amplitude of element of Ca2+ release, F is Faraday’s constant and Z is valence of 
Ca2+ ion. [Bhargava and Pardasani, 2011; Luo and Rudy, 1994; Luo and Rudy, 1994]. 
Hence, the problem reduces to find the solution of equation (20) with respect to the 

boundary conditions (21) and (22).    

Here, 2Ca 


   is the background calcium concentration,  B

 is the total buffer 

concentration, Ca  represents the flux. 2Ca     approaches to the background 

concentration 0.1 μ M as r tends to ∞ and 𝜃 tends to π. But the domain taken here is not 

infinite but finite one. Here, the distance required for 2Ca     to attain background 

concentration is 7.8 μ m for the Cardiac Myocytes (i.e. radius of the Cardiac Myocytes). 
[Michailova et. al., 2002] 

The study is performed for two cases as given below:  

Case I: When 
2[ ]pumpK Ca   then we have [Bhargava and Pardasani, 2011; Tripathi 

and Adlakha, 2011]

2 2
2 2 2

2 22 2
( )

pump pumppump

Ca Ca Ca
a

K KK Ca

  



           
   

 

In view of above equation (20) is taken as: 

   

 
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1
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 


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  

 



 

Now the finite element method is employed to solve equation (23) with boundary 
conditions (21) and (22). The discretized variational integral of equation (23) is given 

by 

   
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r
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






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 
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 

 
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 

   
  



 

 

 

) (24)
k

i

d





 
 
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Here, ‘u’ is used in lieu of 2Ca     , e = 1, 2,…N. 

Case II: When 
2[ ]pumpK Ca   then we assume 2 0 1pumpK Ca for      , 

[Bhargava and Pardasani, 2011; Tripathi and Adlakha, 2011]  

2
2

2 22 2

1
( )

1
pump

Ca
b

K Ca





   
    

 

In view of above equation (20) is taken as: 

   

 
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1
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       

 

 




 

Now the finite element method is employed to solve equation (25) with boundary 
conditions (21) and (22). The discretized variational integral of equation (25) is given 

by 

   
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 
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k
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d



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 


 

Here, ‘u’ is used in lieu of 2Ca     , e = 1, 2,…N. 

Assuming that the cardiac myocytes is of circular shape and it is divided into coaxial 
circular sectional elements , given in Fig 1 
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Fig 1: Finite element Discretization of myocyte 

 

Here the number in square represents the number of elements and number without 

square represents the nodal points where the nodal point 15 represents point source of 
calcium. The Table 1 represents the element information. 

Table 1: Element information 

element a b c d 

1 1 2 4 5 

2 2 3 5 6 

3 4 5 7 8 

4 5 6 8 9 

5 7 8 10 11 

6 8 9 11 12 

7 10 11 13 14 

8 11 12 14 15 

9 13 14 16 17 

10 14 15 17 18 

11 16 17 19 20 

12 17 18 20 21 

13 19 20 22 23 

14 20 21 23 24 

15 22 23 1 2 

16 23 24 2 3 
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The thickness of each element is very small, therefore ( )eu  is assigned bilinear variation 
with respect to position. The following bilinear shape function for the calcium 

concentration within each element has been employed. 

( ) ( ) ( ) ( ) ( )

1 2 3 4 (27)e e e e eu a a r a a r      

In matrix form the equation (27) can be written as 
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 
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Using equations (29)-(32) we get  
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From Equation (28) and (33) we get 

( ) ( ) ( ) (34)e T e eu P R u  

where 
( ) ( ) 1e eR P   
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Now the integrals given in equations (24) and (26) in matrix notation can also be written 

as, 
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Now ( )eI is minimized with respect to
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This leads to following system of linear algebraic equations 

     
(24 24) (24 1) (24 1)

(37)K u F
  

  

Here,  1 2 24

Tu u u u    , K is characteristic matrix and F is characteristic 

vector. 

Gaussian Elimination method is employed to solve the system (37). 

 

3. RESULTS AND DISCUSSION 

A computer program in MATLAB 7.10.0.499 is developed to find numerical solution 
to the entire problem. To find the solution of equation (37) the biophysical parameters 

are taken from the literature as given in Table 2. [Michailova et. al., 2002] 
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Table 2: Biophysical parameters. [Michailova et. al., 2002] 

R Radius of the cell 7.8 m  

CaI  Amplitude of elemental Ca2+ release 1 p A 

F Faraday’s  constant 96500 C/mol 

Z Valence of Ca2+ ion 2 

DCa Diffusion coefficient of free Ca2+  in cytosol 780 2 /m s  

 i T
B  Total concentration for each Ca2+ buffer (Troponin C) 70 M  

iK  
Dissociation constant (Troponin C) ,i

i

k
k



  
0.51 M  

 Ca
  Intracellular free Ca2+ concentration at rest 0.1 M  

Vpump SERCA pump rate 400 1 1M S    

Vleak Leak rate 0.02 1 1M S    

Kpump Dissociation rate of SERCA pump 0.2 M  

 

 

Fig 2: Difference of calcium concentration in myocyte cell with and without pump in 
absence of leak for Case I at different buffer concentrations 
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Fig 2 represents the difference of 2[ ]Ca   in myocyte cell with and without pump in 

absence of leak for case I at different buffer concentrations 50 µM, 100 µM, 150 µM 

and 200 µM. In Fig 2, it is observed that the difference in 2[ ]Ca   is zero at source, 

increases initially along r and θ direction as we move away from the source and finally 
becomes zero at r = 7.8 µM and θ = 0. The difference in 2[ ]Ca   is maximum for buffer 

concentration 50 µM and minimum for buffer concentration 200 µM. This difference 

in 2[ ]Ca   decreases in the ratio of increase in buffer concentration. The effect of pump 

at higher buffer concentration is not significant. 

 

Fig 3 Difference of calcium concentration in myocyte cell with and without leak in 
absence of pump at different buffer concentrations 

 

Fig 3 represents the difference of 2[ ]Ca   in myocyte cell with and without leak in 

absence of pump at buffer concentrations 50 µM, 100 µM, 150 µM and 200 µM. In Fig 

3, it is observed that the difference in 2[ ]Ca  is zero at source, increases initially along 

r and θ direction as we move away from the source and finally becomes zero at r = 7.8 
µM and θ = 0. The difference in 2[ ]Ca   is maximum for buffer concentration 50 µM 

and minimum for buffer concentration 200 µM. This difference in 2[ ]Ca   decreases in 

the ratio of increase in buffer concentration. The effect of leak at higher buffer 

concentration is not significant due to buffering process. 
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Fig 4: Difference of calcium concentration in myocyte cell with and without leak in 

presence of pump for case I at different buffer concentrations 

 

Fig 4 represents the difference of 2[ ]Ca   in myocyte cell with and without leak in 

presence of pump for case I at buffer concentrations 50 µM, 100 µM, 150 µM and 200 

µM. In Fig 4, it is observed that the difference in 2[ ]Ca   is zero at source, increases 

initially along r and θ direction as we move away from the source and finally becomes 
zero at r = 7.8 µM and θ = 0. The difference in 2[ ]Ca   is maximum for buffer 

concentration 50 µM and minimum for buffer concentration 200 µM. This difference 

in 2[ ]Ca   decreases in the ratio of increase in buffer concentration. In Fig 4 the effect 

of leak on calcium distribution in myocyte cell is not clearly visible as it is balanced by 

the presence of pump and buffer compared to Fig 3.  
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Fig 5 Difference of calcium concentration in myocyte cell with and without pump in 
presence of leak for case I at different buffer concentrations. 

 

Fig 5 represents the difference of 2[ ]Ca   in myocyte cell with and without pump in 

presence of leak for case I at buffer concentrations 50 µM, 100 µM, 150 µM and 200 

µM. In Fig 5, it is observed that the difference in 2[ ]Ca   is zero at source, increases 

initially along r and θ direction as we move away from the source and finally becomes 
zero at r = 7.8 µM and θ = 0. The difference in calcium concentration is maximum for 
buffer concentration 50 µM and minimum for buffer concentration 200 µM. This 

difference in 2[ ]Ca   decreases in the ratio of increase in buffer concentration. In Fig 4 

the effect of pump on calcium distribution in myocyte cell is not clearly visible as it is 
balanced by influx due to leak. Comparing Fig 5 with Fig 2 we observe that the 

difference in 2[ ]Ca   in Fig 5 is higher than that Fig 2 for the corresponding values of 

buffer concentrations. This is due to the presence of leak in case of Fig 5 and absence 

of leak in case of Fig 2. 
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Fig 6: Difference of calcium concentration in myocyte cell with and without pump in 

absence of leak for Case II at different buffer concentration 

 

Fig 6 represents the difference of 2[ ]Ca   in myocyte cell with and without pump in 

absence of leak for case II at different buffer concentrations 50 µM, 100 µM, 150 µM 

and 200 µM. In Fig 6, it is observed that the difference in 2[ ]Ca   is zero at source, 

increases initially along r and θ direction as we move away from the source and finally 
becomes zero at r = 7.8 µM and θ = 0. The difference in calcium concentration is 
maximum for buffer concentration 50 µM and minimum for buffer concentration 200 

µM. This difference in 2[ ]Ca   decreases in the ratio of increase in buffer concentration. 

The effect of pump at higher buffer concentration is not significant in absence of leak 

due to the buffer. It is also observed that in case II (Fig 6) the difference in 2[ ]Ca   is 

higher than that of case I (Fig 2) at lower buffer concentration. The effect of pump is 
dominated by the higher buffer concentration in both cases I and II.  
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Fig 7: Difference of calcium concentration in myocyte cell with and without leak in 

presence of pump for case II at different buffer concentrations 

 

Fig 7 represents the difference of 2[ ]Ca   in myocyte cell with and without leak in 

presence of pump for case II at buffer concentrations 50 µM, 100 µM, 150 µM and 200 

µM. In Fig 7, it is observed that the difference in 2[ ]Ca   is zero at source, increases 

initially along r and θ direction as we move away from the source and finally becomes 
zero at r = 7.8 µM and θ = 0. The difference in calcium concentration is maximum for 

buffer concentration 50 µM and minimum for buffer concentration 200 µM. This 

difference in 2[ ]Ca   decreases in the ratio of increase in buffer concentration. In Fig 7 

the effect of leak on calcium distribution in myocyte cell is not clearly visible as it is 

balanced by the presence of pump and buffer compared to Fig 3. It is also observed that 

in Fig 7 for case II the difference in 2[ ]Ca   is higher than that in Fig 4 for case I at 

lower buffer concentration. This is due to the smaller value of dissociation rate constant 
of SERCA pump for case in Fig 7. At higher values of buffer concentration the effect 
of pump and leak is balanced by the buffers.  
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Fig 8. Difference of calcium concentration with and without pump in presence of leak 

for case II at different buffer concentrations 

 

 Fig 8 represents the difference of 2[ ]Ca   in myocyte cell with and without pump in 

presence of leak for case I at buffer concentrations 50 µM, 100 µM, 150 µM and 200 

µM. In Fig 8, it is observed that the difference in 2[ ]Ca   is zero at source, increases 

initially along r and θ direction as we move away from the source and finally becomes 

zero at r = 7.8 µM and θ = 0. The difference in 2[ ]Ca   is maximum for buffer 

concentration 50 µM and minimum for buffer concentration 200 µM. This difference 

in 2[ ]Ca   decreases in the ratio of increase in buffer concentration. In Fig 8 the effect 

of leak on calcium distribution in myocyte cell is not clearly visible as it is balanced by 

influx due to leak. It is also observed that in Fig 8 for case II the difference in 2[ ]Ca   is 

higher than that in Fig 5 for case I at lower buffer concentration. This is due to the 
smaller value of dissociation rate constant of SERCA pump for case in Fig 8. 

 

4. CONCLUSION 

A two dimensional finite element simulation is proposed to understand the calcium 
regulation mechanism in a myocyte cell involving excess buffers, pump and leak. The 
proposed work has proved to be effective in generating interesting results. On the basis 

of the results it can be concluded that the pump, buffers and leak have significant effect 

on calcium distribution in a myocyte cell. The effect of pump and leak on 2[ ]Ca   in a 
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myocyte cell is more significant at lower buffer concentrations. This happen in the case 

where buffers have got saturated and their capacity to bind calcium has become low. 
But when buffer concentration is high, then it dominates over the effect of pump and 

leak in regulating the 2[ ]Ca   in a myocyte cell. In the entire myocyte cell exhibits a 

beautiful coordinated mechanism to regulate the calcium concentration in the cell. The 
results give us better insights of theses mechanisms in the cell. Such finite element 

models can be developed to study the calcium distribution in myocytes in different 
clinical situations. The information generated from such models can be of great use to 

biomedical scientists for developing protocols for diagnosis and treatment of heart 
diseases.  
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