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This article is concerned with developing a method to find a numerical solu-
tion of a one-dimensional variable-order non-linear partial integro-differential
equation (PIDE) viz., reaction–advection–diffusion equation with initial and
boundary conditions. The proposed numerical scheme shifted Legendre collo-
cation method is based on operational matrices. The operational matrices using
one-dimensional wavelets are derived to solve the said variable-order model.
First operational matrices have been introduced for integration and variable-
order derivatives using one-dimensional Legendre wavelets (LWs). After that,
using the shifted Legendre collocation points, the model is reduced to a system
of algebraic equations, which are solved using Newton–Cotes method. The error
is then calculated by comparing the numerical solution obtained from the sys-
tem of algebraic equations and the known exact solution of an existing problem
to validate the efficiency of the proposed numerical scheme. The main contribu-
tion of the article is the graphical exhibitions of the solution profile for different
variable order derivatives in presence of different values of the parameters.

1 INTRODUCTION

One of the crucial origins of fresh water is ground water, that fulfills our basic need for drinking water and also water
for industries and agriculture. Groundwater provides about 97% of the fresh water on the earth that is why it is more
important than surface water. Unfortunately, it is getting polluted because of direct or indirect discharge of pollutants into
the water bodies. Main factors that are responsible for polluting water are industrialization, urbanization and agriculture.
India stands in the list of countries affected by water pollution, that is why it is very important to develop a mathematical
model to predict the movement of solute in aquifers and how it affects environment and human health. We require excel-
lent understanding of chemical, physical and biological processes those can control solute transportation in groundwater.
We should definitely consider domain of problems, the parameters used to create groundwater model for field problems
and also for the given boundary conditions. Researchers now a days are very much interested in the topic of solute trans-
portation and that is why there are lots of methods found in recent years to solve several different models depicting solute
transportation. Presently,many problemswith different concepts of science are relatedwith the non-linear equations [1–3].
During literature survey, various models on non-linear problems have been found [4–8]. Many dynamical systems when
modeled, generate an integral term consisting of an unknown function. The integro-differential equations (IDEs) and the
integral, appear in modeling due to several phenomena of sciences. An IDE is an equation that contains both integral
and derivative of functions. This partial integro-differential equations (PIDEs) are advantageous in various applications,
like, quantitative socio-dynamics [9–12]. Study of PIDEs has an uttermost powerful equations, which are fractional partial
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integro-differential equations (FPIDEs). In Liu and He [13], researchers have studied the fractional order thermoelastic
problem of porous structure. In last few years, researchers have found the fractional calculus, as an efficient tool which
can help one a lot in describing the behaviors of several dynamical systems with more accuracy. The PIDEs can be studied
based upon Chebyshev wavelets, one-dimensional Legendre wavelets (LWs), cubic B-spline collocation, one-dimensional
Bernoulli wavelets and so forth. Various studies are present in the literature to solve the variable-order differential equa-
tion (VODEs)[14] such as optimization method to solve variable-order Poisson equation, one-dimensional LWs to solve
VOnon-linear advection–diffusion equationwith variable coefficients [15]. Countless natural systems can be shaped using
fractional-order PDE, for example, pollution of groundwater. Tomodel the transportation of pollutant in the surfacewater,
atmosphere and groundwater, one can use the fractional order reaction–advection–diffusion equation (FRADE). The flow
equations are non-linear, but advection and diffusion are of primary importance [16–19]. We are already familiar with the
integer-order differentiation and integration whereas the integer-order differentiation and integration can be generalized
with fractional calculus to an arbitrary order.
Recent years, there are a growth of important dynamical problems that depend on time, space or both and show

behaviour of fractional order. In fact, variable-order calculus can be more useful for illuminating more complicated
dynamical problems. Variable order operators are a new paradigm in science [20], have generalised the variable order
case for Riemann–Liouville and Marchaud fractional integration and differentiation and also explained inversion for-
mula. Different authors have explained different definitions for derivatives of variable order each suits the respective aim.
Variable-order derivative is permitted to vary as a function of 𝑡 or as a function of 𝑥 or both. Researchers like Lorenzo
and Hartley [21] have discovered deeper in the concept of variable-order derivative. For the Caputo-definition, Riemann–
Liouville-definition, Marchaud-definition and Grünwald-definition, the researchers have suggested definitions based on
variable-order operators. Operators with variable orders have kernels with variable exponents. This makes finding the
analytical solutions for variable-order fractional differential equations more challenging. Fortunately, advancement of
numerical techniques are at an early stage but can be more effective to find solutions. For the solution of VODEs, a con-
sistent approximation is suggested [22]. Stability and convergence of finite-difference approximation are investigated for
the variable-order non-linear fractional diffusion equation [23]. We can easily observe that variable-order operator is more
effective when it comes for solving dynamical problems.
Porous media refers to a medium that contains pores. One of the primary elements for all the living things on earth

is water, which is present in two forms on earth (underground, out of which only 2.5% is fresh) and surface water. Most
important source of fresh water is underground water. Contaminated groundwater is very harmful to everyone – humans,
wildlife, environment and so forth. The most of the structures through which contaminated ground water passes are
porous type. Many scientists and researchers are working on predicting the movement of contaminated groundwater
through several porous media through developing different models.
A lot of work has been done by so many researchers related to fractional-order diffusion equation[16, 24] to observe

the nature of diffusivity of contaminated water in porous media. But to the best of the authors’ knowledge, a very few
works related to variable-ordered diffusion equation are found in the literature survey. In the present scientific contri-
bution, the authors have considered one-dimensional variable-ordered non-linear partial differential equation. Main aim
of this article is to achieve the numerical solution of the VOPIDE with higher accuracy. First, an operational matrix is
introduced for variable-order derivative and another operational matrix for integration, which have been implemented
for one-dimensional LWs to obtain the desired results. The VOPIDEs can be then, scaled down into a system of algebraic
equations, by employing one-dimensional LWs approximations and the operational matrices for variable-order derivative
and integration. After that Newton–Cotes collocation method is applied on the obtained system of algebraic equations to
achieve the numerical solution of the VOPIDE using MATHEMATICA software (version 11.3).

2 PRELIMINARIES

This section contains few definitions which have been used in the article.

2.1 Definition

The fractional-order 𝛾(𝑥, 𝑡) partial derivative of a function𝑤(𝑥, 𝑡), with respect to 𝑥, in the Caputo sense [25–28] is defined
as [29]
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𝑐
0𝐷
𝛾
𝑥𝑤(𝑥, 𝑡) =

⎧⎪⎨⎪⎩
1

Γ(𝑟 − 𝛾)
∫ 𝑥
0
(𝑥 − 𝜉)𝑟−𝛾−1

𝜕𝑟𝑤(𝜉, 𝑡)

𝜕𝜉𝑟
𝑑𝜉, if 𝑟 − 1 < 𝛾 < 𝑟,

𝜕𝑟𝑤(𝑥, 𝑡)

𝑑𝑥𝑟
, if 𝛾 = 𝑟 ∈ 𝑁.

(1)

Similarly, with respect to 𝑡, the fractional-order 𝛾(𝑥, 𝑡) partial derivative of a function 𝑤(𝑥, 𝑡) in the Caputo sense is

𝑐
0𝐷
𝛾
𝑡 𝑤(𝑥, 𝑡) =

⎧⎪⎨⎪⎩
1

Γ(𝑠 − 𝛾)
∫ 𝑡
0
(𝑡 − 𝜏)𝑠−𝛾−1

𝜕𝑠𝑤(𝑥, 𝜏)

𝜕𝜏𝑠
𝑑𝜏, if 𝑠 − 1 < 𝛾 < 𝑠,

𝜕𝑠𝑤(𝑥, 𝑡)

𝑑𝑡𝑠
, if 𝛾 = 𝑠 ∈ 𝑁,

(2)

where 𝛾(𝑥, 𝑡) represents a function of two variable 𝑥 and 𝑡.

2.1.1 Corollary

The Caputo derivative of VO-FD implies the following [29]:

𝑐
0𝐷
𝛾
𝑥𝑥
𝛽 =

⎧⎪⎨⎪⎩
Γ(𝛽 + 1)

Γ(𝛽 + 1 − 𝛾)
𝑥𝛽−𝛾, if 𝛽 ∈ 𝑁0 𝑎𝑛𝑑 𝛽 ≥ 𝑟, 𝑜𝑟𝛽 ∉ 𝑁0 𝑎𝑛𝑑 𝛽 > 𝑟,

0, if 𝛽 ∈ 𝑁0 𝑎𝑛𝑑 𝛽 < 𝑟,
(3)

where 𝑟 − 1 < 𝛾(𝑥, 𝑡) ≤ 𝑟 and 𝑁0 is the set of non-negative integers.

2.2 The Legendre wavelets

This section consists of definitions of one-dimensional LWs. The LWs 𝜓𝑛,𝑚(𝑡) = 𝜓𝐿(𝑘, 𝑛,𝑚, 𝑡) depend on four arguments,
where 𝑛 = 1, 2, … , 2𝑘−1, 𝑘 ∈ 𝑁,𝑚 = 0, 1, … , (𝑀 − 1), with𝑚 is the order of Legendre polynomial and 𝑡 is the normalised
time. LWs on interval [0,1] can be defined as

𝜓𝑛,𝑚(𝑡) =

⎧⎪⎨⎪⎩
√
𝑚 +

1

2
2𝑘∕2𝐿𝑚(2

𝑘𝑡 − 2𝑛 + 1), if 𝑛 − 1
2𝑘−1

≤ 𝑡 ≤ 𝑛

2𝑘−1

0, Otherwise,
(4)

where

𝐿0(𝑡) = 1,

𝐿1(𝑡) = 𝑡, (5)

and

𝐿𝑚+1(𝑡) =
(2𝑚 + 1)

(𝑚 + 1)
𝑡𝐿𝑚(𝑡) −

(𝑚)

(𝑚 + 1)
𝐿𝑚−1(𝑡),𝑚 = 1, 2, 3,

… . (6)

2.3 Approximation of a function

Approximation of a function 𝑤(𝑥, 𝑡) ∈ 𝐿2[0, 1] × [0, 1] can be written as

𝑤(𝑥, 𝑡) ≈ Ψ𝑇
𝑘,𝑀
(𝑡)𝑊Ψ𝑘1,𝑀1(𝑥), (7)
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4 of 16 BISWAS et al.

where

Ψ𝑘,𝑀 = [𝜓1,0, … , 𝜓1,𝑀−1, 𝜓2,0, … , 𝜓2,𝑀−1, … , 𝜓2(𝑘−1),0, … , 𝜓2(𝑘−1),𝑀−1]
𝑇,

Ψ𝑘1,𝑀1 = [𝜓1,0, … , 𝜓1,𝑀1−1, 𝜓2,0, … , 𝜓2,𝑀1−1, … , 𝜓2(𝑘1−1),0, … , 𝜓2(𝑘1−1),𝑀1−1]
𝑇,

and𝑊 is a 2𝑘−1𝑀 × 2𝑘1−1𝑀1 coefficient matrix with entries as

𝑤𝑛,𝑚,𝑛1,𝑚1 = ∫
1

0

𝜓𝑛,𝑚(𝑥)

(
∫
1

0

𝑤(𝑥, 𝑡)𝜓𝑛1,𝑚1(𝑡)𝑑𝑡

)
𝑑𝑥. (8)

3 OPERATIONALMATRICES

3.1 The operational matrix for VO-FD

Let Φ(𝑡) be a 2𝑘1−1𝑀1-dimensional column vector as

Φ(𝑡) = [𝜙1(𝑡), 𝜙2(𝑡), … , 𝜙2𝑘1−1𝑀1(𝑡)]
𝑇, (9)

where 𝜙𝑖(𝑡) = 𝑡𝑖−1 , 𝑖 = 1, 2, … , 2𝑘1−1𝑀1.
Then Φ(𝑡) and the LWs vector Ψ𝑘1,𝑀1(𝑡) are related as

Φ(𝑡) = 𝑅Ψ𝑘1,𝑀1 , (10)

where 𝑅𝑖,𝑗= < 𝜙𝑖(𝑡), 𝜓𝑗(𝑡) >.

3.1.1 Lemma

Suppose Φ(𝑡) be defined as in Equation (9) and 𝛾(𝑥, 𝑡) (0 < 𝛾(𝑥, 𝑡) ≤ 1) be a positive real-valued function defined on 𝑅2
[30]. Then the Caputo VO derivative of the order 𝛾(𝑥, 𝑡) of Φ(𝑡) can be represented as

𝑐
0𝐷
𝛾(𝑥,𝑡)
𝑡 Φ(𝑡) = 𝐹

𝛾(𝑥,𝑡)
𝑡 Φ(𝑡), (11)

where 𝐹𝛾(𝑥,𝑡)𝑡 is an operational matrix of order 2𝑘1−1𝑀1 × 2𝑘1−1𝑀1 , given by

𝐹
𝛾(𝑥,𝑡)
𝑡 =

1

𝑡𝛾(𝑥,𝑡)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 … 0

0
Γ(2)

Γ(2 − 𝛾(𝑥, 𝑡))
… 0

0 0 … ⋮

⋮ ⋮ ⋱ 0

0 0 …
Γ(2𝑘1−1𝑀1)

Γ(2𝑘1−1𝑀1 − 𝛾(𝑥, 𝑡))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (12)

3.1.2 Theorem

Suppose Ω = [0, 1] × [0, 1] and 𝛾(𝑥, 𝑡) is a real-valued function with domainΩ [30]. The Caputo variable-order fractional
derivative of Ψ𝑘1,𝑀1 of order 𝛾(𝑥, 𝑡) is

 15214001, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202200222 by Indian Institute O

f T
echnology, W

iley O
nline L

ibrary on [24/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BISWAS et al. 5 of 16

F IGURE 1 Plots of exact 𝑐0𝐷
0.8
𝑡 𝑤(𝑥, 𝑡) and approximate

𝑐
0𝐷
0.8
𝑡 𝑤𝑛,𝑚(𝑥, 𝑡) versus 𝑥 at fixed 𝑘 = 𝑘1 = 1,𝑀 = 𝑀1 = 8 and 𝑡 = 0.5

𝑐
0𝐷
𝛾(𝑥,𝑡)
𝑡 Ψ𝑘1,𝑀1(𝑡) = (𝑄

(𝛾(𝑥,𝑡)))Ψ𝑘1,𝑀1(𝑡), (13)

where𝑄(𝛾(𝑥,𝑡)) = 𝑅−1𝐹𝛾(𝑥,𝑡)𝑡 𝑅 ,𝑅 is 2𝑘1−1𝑀1 × 2𝑘1−1𝑀1matrix defined in Equation (10) and𝐹𝛾(𝑥,𝑡)𝑡 is an 2𝑘1−1𝑀1 × 2𝑘1−1𝑀1
operational matrix defined in Equation (12).
Hence to find the approximate variable-order fractional derivative in Caputo sense of a function 𝑤(𝑥, 𝑡), first, find the

approximation of the function 𝑤(𝑥, 𝑡) defined in Equation (7) as

𝑤(𝑥, 𝑡) ≈ Ψ𝑇
𝑘,𝑀
(𝑡)𝑊Ψ𝑘1,𝑀1(𝑥) = 𝑤𝑛,𝑚(𝑥, 𝑡). (14)

Now the approximation of variable-order derivative in Caputo sense using Equation (13) can be calculated as

𝑐
0𝐷
𝛾(𝑥,𝑡)
𝑡 𝑤(𝑥, 𝑡) ≈𝑐0 𝐷

𝛾(𝑥,𝑡)
𝑡 𝑤𝑛,𝑚(𝑥, 𝑡)

= 𝑄(𝛾(𝑥,𝑡))Ψ𝑇
𝑘,𝑀
(𝑡)𝐹Ψ𝑘1,𝑀1(𝑥)

= (𝑅−1𝐹
𝛾(𝑥,𝑡)
𝑡 𝑅)Ψ𝑇

𝑘,𝑀
(𝑡)𝐹Ψ𝑘1,𝑀1(𝑥), (15)

Now let us verify the exact variable order Caputo derivative defined in Equation (3) with the approximated variable-
ordered Caputo derivative defined in Equation (15). Figure 1 depicts the comparison of the exact with the approximated
variable-ordered Caputo derivative of a function 𝑤(𝑥, 𝑡) = (𝑥𝑡)2.2 for order 𝛾(𝑥, 𝑡) = 0.8 at fixed 𝑡 = 0.5.

3.2 The operational matrix for partial derivative

Let 𝑤𝑛,𝑚(𝑥, 𝑡) be the approximation of 𝑤(𝑥, 𝑡) as defined in Section 2.3, where Ψ𝑘1,𝑀1(𝑡) is the LW column vector, then

𝑤𝑛,𝑚(𝑥, 𝑡) = Ψ
𝑇
𝑘,𝑀
(𝑡)𝑊Ψ𝑘1,𝑀1(𝑥), (16)

where𝑊 is an unknown 2𝑘1−1𝑀1 × 2𝑘1−1𝑀1 order matrix. The derivatives can be approximated as [31]

𝜕𝑤𝑛,𝑚(𝑥, 𝑡)

𝜕𝑥
= Ψ𝑇

𝑘,𝑀
(𝑡)𝑊𝐷Ψ𝑘1,𝑀1(𝑥), (17)
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6 of 16 BISWAS et al.

F IGURE 2 Plots of exact 𝜕𝑤(𝑥, 𝑡)∕𝜕𝑡 and approximated 𝜕𝑤𝑛,𝑚(𝑥, 𝑡)∕𝜕𝑡 versus 𝑥 at fixed 𝑘 = 𝑘1= 1,𝑀 = 𝑀1= 8 and 𝑡 = 0.5

where D is a 2𝑘1−1𝑀1 × 2𝑘1−1𝑀1 order operational matrix for derivative which is

𝐷 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐹 0 0 … 0 0

0 𝐹 0 … 0 0

0 0 𝐹 … 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 … 𝐹 0

0 0 0 … 0 𝐹

⎞⎟⎟⎟⎟⎟⎟⎠
, (18)

in which 𝐹 is a𝑀1 ×𝑀1 matrix with components

𝐹𝑟,𝑠 =

{
2𝑘
√
(2𝑟 − 1)(2𝑠 − 1), if 𝑟 = 2, 3, …,𝑀1, 𝑠 = 1,. . . , 𝑟 − 1, and (𝑟 + 𝑠) is odd

0, Otherwise .
(19)

For first-order derivative,

𝜕𝑤𝑛,𝑚(𝑥, 𝑡)

𝜕𝑡
= Ψ𝑇

𝑘,𝑀
(𝑡)𝐷𝑇𝑊Ψ𝑘1,𝑀1(𝑥), (20)

and for higher-order derivatives,

𝜕𝑛𝑤𝑛,𝑚(𝑥, 𝑡)

𝜕𝑥𝑛
= Ψ𝑇

𝑘,𝑀
(𝑡)𝑊𝐷𝑛Ψ𝑘1,𝑀1(𝑥), (21)

and

𝜕𝑛𝑤𝑛,𝑚(𝑥, 𝑡)

𝜕𝑡𝑛
= Ψ𝑇

𝑘,𝑀
(𝑡)(𝐷𝑇)𝑛𝑊Ψ𝑘1,𝑀1(𝑥). (22)

The verification of the approximated first-order partial derivative defined in Equation (20)with the exact first-order partial
derivative of a function𝑤(𝑥, 𝑡)with respect to 𝑥 is given in Figure 2 taking the function as𝑤(𝑥, 𝑡) = (𝑥𝑡)2.2 at fixed 𝑡 = 0.5.

 15214001, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202200222 by Indian Institute O

f T
echnology, W

iley O
nline L

ibrary on [24/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BISWAS et al. 7 of 16

3.3 Integral operational matrix

Let Ψ𝑘1,𝑀1(𝑡) be the LW column vector defined in Section 2.3, then the integration of Ψ𝑘1,𝑀1(𝑡) with respect to 𝑡 can be
defined as [32]

∫
𝑡

0

Ψ𝑘1,𝑀1(𝜏)𝑑𝜏 = 𝑃Ψ𝑘1,𝑀1(𝑡), (23)

where P is a 2𝑘1−1𝑀1 × 2𝑘1−1𝑀1 ordered matrix given by

𝑃 =
1

2𝑘1

⎛⎜⎜⎜⎜⎜⎜⎝

𝐻 𝐺 𝐺 … 𝐺 𝐺

0 𝐻 𝐺 … 𝐺 𝐺

0 0 𝐻 … 𝐺 𝐺

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 … 𝐻 𝐺

0 0 0 … 0 𝐻

⎞⎟⎟⎟⎟⎟⎟⎠
, (24)

where 𝐺 and𝐻 are𝑀1 ×𝑀1 ordered matrices given below:

𝐺 =

⎛⎜⎜⎜⎜⎜⎜⎝

2 0 0 … 0 0

0 0 0 … 0 0

0 0 0 … 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 … 0 0

0 0 0 … 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
, (25)

and

𝐻 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

31∕2
… 0 0

−
31∕2

3
0 … 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 .. 0
(2𝑀1 − 3)

1∕2

(2𝑀1 − 3)(2𝑀1 − 1)
1∕2

0 0 … −
(2𝑀1 − 1)

1∕2

(2𝑀1 − 1)(2𝑀1 − 3)
1∕2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

Hence, we can define integration of function 𝑤(𝑥, 𝑡) as

∫
𝑡

0

𝑤𝑛,𝑚(𝑥, 𝜏)𝑑𝜏 = Ψ
𝑇
𝑘,𝑀
(𝑡)(𝑃𝑇)𝑊Ψ𝑘1,𝑀1(𝑥). (27)

The verification of the approximated integration defined in Equation (27) with the exact integration of a function𝑤(𝑥, 𝑡)
with respect to 𝑡 is given in Figure 3 taking the function as 𝑤(𝑥, 𝑡) = (𝑥𝑡)2.2 at fixed 𝑡 = 0.5.

4 SOLUTION OF THE VARIABLE-ORDER NON-LINEAR PARTIAL DIFFERENTIAL
EQUATION

In this section, a drive has been taken to solve the variable-order non-linear reaction–advection–diffusion equation given
as

𝑐
0𝐷
𝛾(𝑥,𝑡)
𝑡 𝑤(𝑥, 𝑡) = 𝐷1

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
+ 𝑉1

𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
+ 𝜆𝑤(𝑥, 𝑡)(1 − 𝑤(𝑥, 𝑡)) + 𝛿 ∫

𝑡

𝑜

𝑤(𝑥, 𝜏)𝑑𝜏, 0 ≤ 𝛾(𝑥, 𝑡) ≤ 1, (28)
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8 of 16 BISWAS et al.

F IGURE 3 Plots of exact ∫ 𝑡
0
𝑤(𝑥, 𝜏)𝑑𝜏 and approximated ∫ 𝑡

0
𝑤𝑛,𝑚(𝑥, 𝜏)𝑑𝜏 versus 𝑥 at fixed 𝑘 = 𝑘1= 1,𝑀 = 𝑀1= 8 and 𝑡 = 0.5

under the initial and boundary conditions as

𝑤(𝑥, 0) = 𝜓1(𝑥), 0 ≤ 𝑥 ≤ 1, (29)

𝑤(0, 𝑡) = 𝜓2(𝑡), 0 ≤ 𝑡 ≤ 1, (30)

and

𝑤(1, 𝑡) = 𝜓3(𝑡), 0 ≤ 𝑡 ≤ 1. (31)

First, we will use shifted Legendre polynomial to approximate the function 𝑤(𝑥, 𝑡) ∈ [0, 1] × [0, 1] as

𝑤(𝑥, 𝑡) ≈ Ψ𝑇
𝑘,𝑀
(𝑡)𝑊Ψ𝑘1,𝑀1(𝑥). (32)

Then its derivatives can be defined as

𝑐
0𝐷
𝛾(𝑥,𝑡)
𝑡 𝑤(𝑥, 𝑡) ≈

(
𝑐
0𝐷
𝛾(𝑥,𝑡)
𝑡 Ψ𝑇

𝑘,𝑀
(𝑡)

)
𝑊Ψ𝑘1,𝑀1(𝑥) = Ψ

𝑇
𝑘,𝑀
(𝑡)

(
𝑄(𝛾(𝑥,𝑡))

)𝑇
𝑊Ψ𝑘1,𝑀1(𝑥), (33)

𝜕𝑛𝑤(𝑥, 𝑡)

𝜕𝑥𝑛
≈
𝜕𝑛

(
Ψ𝑇
𝑘,𝑀
(𝑡)𝑊Ψ𝑘1,𝑀1(𝑥)

)
𝜕𝑥𝑛

= Ψ𝑇
𝑘,𝑀
(𝑡)𝑊

𝜕𝑛Ψ𝑘1,𝑀1(𝑥)

𝜕𝑥𝑛
= Ψ𝑇

𝑘,𝑀
(𝑡)𝑊

(
𝐷𝑛Ψ𝑘1,𝑀1(𝑥)

)
, 𝑛 ∈ 𝑁, (34)

∫
𝑡

0

𝑤(𝑥, 𝜏)𝑑𝜏 ≈ ∫
𝑡

0

(
Ψ𝑇
𝑘,𝑀
(𝜏)𝑊Ψ𝑘1,𝑀1(𝑥)

)
𝑑𝜏 =

(
∫
𝑡

0

Ψ𝑇
𝑘,𝑀
(𝜏)𝑑𝜏

)
𝑊Ψ𝑘1,𝑀1(𝑥) =

(
Ψ𝑇
𝑘,𝑀
(𝑡)𝑃𝑇

)
𝑊Ψ𝑘1,𝑀1(𝑥). (35)

Now substituting Equations (33)–(35) in Equations (28)–(29), we get

Ψ𝑇
𝑘,𝑀
(𝑡)

(
𝑅−1𝐹

𝛾(𝑥,𝑡)
𝑡 𝑅

)𝑇
𝑊Ψ𝑘1,𝑀1(𝑥) = 𝐷1Ψ

𝑇
𝑘,𝑀
(𝑡)𝑊

(
𝐷2Ψ𝑘1,𝑀1(𝑥)

)
+ 𝑉1Ψ

𝑇
𝑘,𝑀
(𝑡)𝑊

(
𝐷Ψ𝑘1,𝑀1(𝑥)

)
+ 𝜆Ψ𝑇

𝑘,𝑀
(𝑡)𝑊Ψ𝑘1,𝑀1(𝑥) − 𝜆[Ψ

𝑇
𝑘,𝑀
(𝑡)𝑊Ψ𝑘1,𝑀1(𝑥)]

2

+ 𝛿
(
Ψ𝑇
𝑘,𝑀
(𝑡)𝑃𝑇

)
𝑊Ψ𝑘1,𝑀1(𝑥), (36)
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BISWAS et al. 9 of 16

and

Ψ𝑇
𝑘,𝑀
(0)𝑊Ψ𝑘1,𝑀1(𝑥) = 𝜓1(𝑥), (37)

where 𝑄𝛾(𝑥,𝑡) = 𝑅−1𝐹𝛾(𝑥,𝑡)𝑡 𝑅.
Equations (36) and (37) are rewritten as

𝐻(𝑥, 𝑡) = Ψ𝑇
𝑘,𝑀
(𝑡)

(
𝑅−1𝐹

𝛾(𝑥,𝑡)
𝑡 𝑅

)𝑇
𝑊Ψ𝑘1,𝑀1(𝑥) − 𝐷1Ψ

𝑇
𝑘,𝑀
(𝑡)𝑊

(
𝐷2Ψ𝑘1,𝑀1(𝑥)

)
− 𝑉1Ψ

𝑇
𝑘,𝑀
(𝑡)𝑊

(
𝐷Ψ𝑘1,𝑀1(𝑥)

)
− 𝜆(Ψ𝑇

𝑘,𝑀
(𝑡)𝑊Ψ𝑘1,𝑀1(𝑥))(1 − Ψ

𝑇
𝑘,𝑀
(𝑡)𝑊Ψ𝑘1,𝑀1(𝑥))

− 𝛿(
(
Ψ𝑇
𝑘,𝑀
(𝑡)𝑃𝑇

)
𝑊Ψ𝑘1,𝑀1(𝑥)) + Ψ

𝑇
𝑘,𝑀
(0)𝑊Ψ𝑘1,𝑀1(𝑥) − 𝜓1(𝑥), (38)

and the boundary conditions (30) and (31) become

Ψ𝑇
𝑘,𝑀
(𝑡)𝑊Ψ𝑘1,𝑀1(0) = 𝜓2(𝑡), (39)

Ψ𝑇
𝑘,𝑀
(𝑡)𝑊Ψ𝑘1,𝑀1(1) = 𝜓3(𝑡). (40)

Equation (38) is collocated for (𝑚 + 1) × (𝑚 + 1) points at (𝑥𝑖, 𝑡𝑗) and Equations (39) and (40) are collocated for (𝑚 + 1)
points at 𝑡𝑗 . Here 𝑥𝑖 ’s are the roots of shifted Legendre polynomial 𝑃𝑙𝑚−1(𝑥) and 𝑡𝑗 ’s are the roots of shifted Legendre
polynomial 𝑃𝜏𝑚+1(𝑡). After the collocation of (𝑚 + 1) × (𝑚 + 1) points, we obtain a system of non-linear equations with
(𝑚 + 1) × (𝑚 + 1) unknowns which are given as

𝐻(𝑥𝑖, 𝑡𝑗) = Ψ
𝑇
𝑘,𝑀
(𝑡𝑗)

(
𝑅−1𝐹

𝛾(𝑥𝑖 ,𝑡𝑗)

𝑡 𝑅
)𝑇
𝑊Ψ𝑘1,𝑀1(𝑥𝑖) − 𝐷1Ψ

𝑇
𝑘,𝑀
(𝑡𝑗)𝑊

(
𝐷2Ψ𝑘1,𝑀1(𝑥𝑖)

)
− 𝑉1Ψ

𝑇
𝑘,𝑀
(𝑡𝑗)𝑊

(
𝐷Ψ𝑘1,𝑀1(𝑥𝑖)

)
− 𝜆Ψ𝑇

𝑘,𝑀
(𝑡𝑗)𝑊Ψ𝑘1,𝑀1(𝑥𝑖)

(
1 − Ψ𝑇

𝑘,𝑀
(𝑡𝑗)𝑊Ψ𝑘1,𝑀1(𝑥𝑖)

)
− 𝛿

(
Ψ𝑇
𝑘,𝑀
(𝑡𝑗)𝑃

𝑇
)
𝑊Ψ𝑘1,𝑀1(𝑥𝑖) + Ψ

𝑇
𝑘,𝑀
(0)𝑊Ψ𝑘1,𝑀1(𝑥𝑖) − 𝜓1(𝑥𝑖), (41)

and

Ψ𝑇
𝑘,𝑀
(𝑡𝑗)𝑊Ψ𝑘1,𝑀1(0) − 𝜓2(𝑡𝑗) = 0, (42)

Ψ𝑇
𝑘,𝑀
(𝑡𝑗)𝑊Ψ𝑘1,𝑀1(1) − 𝜓3(𝑡𝑗) = 0. (43)

The systemof non-linear equations are then solved byNewton–Cotes collocation points for (𝑚 + 1) × (𝑚 + 1)unknown
entries of the unknown matrix𝑊. The approximate solution 𝑤𝑛,𝑚(𝑥, 𝑡) given by Equation (32) can be calculated using
simple computation.

5 NUMERICAL APPLICATION

In this section, the proposed method is applied on the following numerical example whose exact solution is known to
validate the accuracy and efficiency of the method.

5.1 Example [33]

𝑐
0𝐷
𝛾(𝑥,𝑡)
𝑡 𝑤(𝑥, 𝑡) + 𝑥

𝜕𝑤

𝜕𝑥
+
𝜕2𝑤

𝜕𝑥2
= 𝑓(𝑥, 𝑡) + 𝜇 ∫

𝑡

0

𝑤(𝑥, 𝜏)𝑑𝜏, 0 < 𝛾(𝑥, 𝑡) ≤ 1, (44)
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10 of 16 BISWAS et al.

TABLE 1 𝐿2-error between exact and approximate solutions at different values of 𝑡 for
𝛾 = 0.15, 0.35, 0.55, 0.75 and 0.95

𝒕 𝜸 = 𝟎.𝟏𝟓 𝜸 = 𝟎.𝟑𝟓 𝜸 = 𝟎.𝟓𝟓 𝜸 = 𝟎.𝟕𝟓 𝜸 = 𝟎.𝟗𝟓

0.0625 2.17 × 10−2 3.09 × 10−3 6.30 × 10−5 9.11 × 10−5 6.63 × 10−6

0.1875 5.39 × 10−3 5.81 × 10−4 5.53 × 10−5 7.12 × 10−5 5.07 × 10−6

0.3125 3.31 × 10−3 4.57 × 10−4 1.37 × 10−5 3.22 × 10−5 4.77 × 10−6

0.4375 1.34 × 10−3 3.86 × 10−4 5.41 × 10−5 2.73 × 10−5 2.07 × 10−6

0.5625 4.68 × 10−4 9.69 × 10−5 4.01 × 10−6 1.29 × 10−5 1.02 × 10−6

0.6875 2.92 × 10−4 6.81 × 10−5 2.94 × 10−6 8.28 × 10−6 8.23 × 10−7

0.8125 1.01 × 10−4 4.54 × 10−5 1.82 × 10−6 4.06 × 10−6 5.62 × 10−7

0.9375 4.70 × 10−5 2.27 × 10−5 1.12 × 10−6 1.15 × 10−6 2.48 × 10−7

where

𝑓(𝑥, 𝑡) = 2𝑡𝛾 + 2𝑥2 + 2 − 𝜇

(
𝑥2𝑡 +

2Γ(𝛾 + 1)𝑡2𝛾+1

(2𝛾 + 1)Γ(2𝛾 + 1)

)
, (45)

with initial condition

𝑤(𝑥, 0) = 𝑥2, 𝑥 ∈ [0, 1] (46)

and boundary conditions

𝑤(0, 𝑡) =
2Γ(𝛾 + 1)𝑡2𝛾

Γ(2𝛾 + 1)
, 𝑡 ∈ [0, 1] (47)

and

𝑤(1, 𝑡) = 1 +
2Γ(𝛾 + 1)𝑡2𝛾

Γ(2𝛾 + 1)
, 𝑡 ∈ [0, 1]. (48)

The exact solution of the problem is given by [33]

𝑤(𝑥, 𝑡) = 𝑥2 +
2Γ(𝛾 + 1)𝑡2𝛾

Γ(2𝛾 + 1)
. (49)

For the comparison of the approximate solution with the exact solution, let us define the 𝐿2- error as

𝐿2(𝑡) =

√
∫
1

0

|𝑢(𝑥, 𝑡) − 𝑢𝑘,𝑀,𝑘1,𝑀1(𝑥, 𝑡)|2𝑑𝑥, (50)

where 𝑢(𝑥, 𝑡) and 𝑢𝑘,𝑀,𝑘1,𝑀1(𝑥, 𝑡) represent the exact and approximate solutions, respectively.
The proposed method is applied in the aforementioned example for 𝜇= 1, 𝑘 = 𝑘1= 1, 𝑀 = 𝑀1= 7 and 𝛾 =

0.15, 0.35, 0.55, 0.75, 0.95, just to get the approximate solution and the results of 𝐿2-error are depicted through Table 1.
Figure 4 depicts the absolute error |𝑤(𝑥, 𝑡) − 𝑤𝑛𝑢𝑚(𝑥, 𝑡)| between exact and approximate solutions versus𝑥 at fixed 𝑡 = 0.5,
whereas Figure 5 depicts the comparison between exact solution and the approximate solution of𝑤(𝑥, 𝑡) for a fixed 𝑡 = 0.5.

6 NUMERICAL RESULTS AND DISCUSSION

After the validation of the efficiency and the accuracy of the derived scheme in the previous section, the proposedmethod
is applied to solve the VOPIDE given in Equation (28) on domain [0,1] under the following prescribed initial and boundary
conditions as

𝑤(𝑥, 0) = 1, 0 ≤ 𝑥 ≤ 1, (51)

𝑤(0, 𝑡) = 0 = 𝑤(1, 𝑡), 0 ≤ 𝑡 ≤ 1. (52)
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BISWAS et al. 11 of 16

F IGURE 4 Plots of absolute error between exact and approximate solutions versus 𝑥 at fixed 𝑡 = 0.5

F IGURE 5 Plots of exact 𝑤(𝑥, 0.5) and approximate 𝑤𝑛𝑢𝑚(𝑥, 0.5) solutions versus 𝑥 at fixed 𝑡 = 0.5

The proposed scheme given in Section 3.1 is applied on the problem (28) under the conditions (51) and (52) to obtain a
system of equations by Newton–Cotes collocation points. In Figure 6, we notice the variations of the solution when the
parameters are considered as 𝜆 = 1, 𝛿 = 1, 𝐷1 = 1, 𝑉1 = 1 and 𝛾(𝑥, 𝑡) = 𝑥𝑡, (𝑥𝑡)2 and (𝑥 + 𝑡)∕2 at fixed 𝑡 = 0.5.
Figure 7 provides the variations of the solution profile when 𝜆 = 0, 𝛿 = 1,𝐷1 = 1,𝑉1 = 1 and 𝛾(𝑥, 𝑡) = 𝑥𝑡 and (𝑥 + 𝑡)∕2

at fixed 𝑡 = 0.5. Whereas from Figure 8, it is noticed that the variations of the solution profile when the parameters are
fixed as 𝜆 = 1, 𝛿 = 1, 𝐷1 = 1, 𝑉1 = 0 and 𝛾(𝑥, 𝑡) = 𝑥𝑡 and (𝑥 + 𝑡)∕2 at fixed 𝑡 = 0.5.
Figure 9 gives the variations of the solution when we fix 𝜆 = 1, 𝛿 = 0, 𝐷1 = 1, 𝑉1 = 1 and 𝛾(𝑥, 𝑡) = 𝑥𝑡 and (𝑥 + 𝑡)∕2 at

fixed 𝑡 = 0.5 and Figure 10 shows the variations of the solution when 𝜆 = 0, 𝛿 = 0, 𝐷1 = 1, 𝑉1 = 0 and 𝛾(𝑥, 𝑡) = 𝑥𝑡 and
(𝑥 + 𝑡)∕2 at fixed 𝑡 = 0.5.
Figure 11 provides the variations of the solution when we fix 𝜆 = 0, 𝛿 = 0,𝐷1 = 1,𝑉1 = 1 and 𝛾(𝑥, 𝑡) = 𝑥𝑡 and (𝑥 + 𝑡)∕2

at fixed 𝑡 = 0.5. Figure 12 depicts the variations of the solution when 𝜆 = 1, 𝛿 = 0, 𝐷1 = 1, 𝑉1 = 0 and 𝛾(𝑥, 𝑡) = 𝑥𝑡 and
(𝑥 + 𝑡)∕2 at fixed 𝑡 = 0.5.
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F IGURE 6 The plots of variation of the
solution for the values of the parameters
𝜆 = 1, 𝛿 = 1, 𝐷1 = 1, 𝑉1 = 1 and 𝛾(𝑥, 𝑡) = 𝑥𝑡,
(𝑥𝑡)2 and (𝑥 + 𝑡)∕2 at fixed 𝑡 = 0.5

F IGURE 7 Plots of 𝑤(𝑥, 0.5) with 𝜆 = 0,
𝛿 = 1, 𝐷1 = 1, 𝑉1 = 1 and 𝛾(𝑥, 𝑡) = 𝑥𝑡 and
(𝑥 + 𝑡)∕2 at fixed 𝑡 = 0.5

F IGURE 8 Plots of 𝑤(𝑥, 0.5) with 𝜆 = 1,
𝛿 = 1, 𝐷1 = 1, 𝑉1 = 0 and 𝛾(𝑥, 𝑡) = 𝑥𝑡 and
(𝑥 + 𝑡)∕2 at fixed 𝑡 = 0.5
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F IGURE 9 Plots of 𝑤(𝑥, 0.5) with 𝜆 = 1,
𝛿 = 0, 𝐷1 = 1, 𝑉1 = 1 and 𝛾(𝑥, 𝑡) = 𝑥𝑡 and
(𝑥 + 𝑡)∕2 at fixed 𝑡 = 0.5

F IGURE 10 Plots of 𝑤(𝑥, 0.5) with 𝜆 = 0,
𝛿 = 0, 𝐷1 = 1, 𝑉1 = 0 and 𝛾(𝑥, 𝑡) = 𝑥𝑡 and
(𝑥 + 𝑡)∕2 at fixed 𝑡 = 0.5

F IGURE 11 Plots of 𝑤(𝑥, 0.5) with 𝜆 = 0,
𝛿 = 0, 𝐷1 = 1, 𝑉1 = 1 and 𝛾(𝑥, 𝑡) = 𝑥𝑡 and
(𝑥 + 𝑡)∕2 at fixed 𝑡 = 0.5

Figures 13 and 14 show that variations of 𝑤(𝑥, 𝑡) versus 𝑥 for the values of parameters 𝜆 = 1, 𝛿 = 1, 𝐷1 = 1, 𝑉1 = 1
and 𝛾(𝑥, 𝑡) = 𝑥𝑡 and (𝑥 + 𝑡)∕2 at fixed 𝑡 = 0.5 and 𝜆 = 0, 𝛿 = 1, 𝐷1 = 1, 𝑉1 = 0 and 𝛾(𝑥, 𝑡) = 𝑥𝑡 and (𝑥 + 𝑡)∕2 at fixed
𝑡 = 0.5, respectively.
We observe from Figures 6–14 that the solute concentration diffuses lesser for the case of linear order as compared to

that of non-linear order.
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14 of 16 BISWAS et al.

F IGURE 1 2 Plots of 𝑤(𝑥, 0.5) with
𝜆 = 1, 𝛿 = 0, 𝐷1 = 1, 𝑉1 = 0 and 𝛾(𝑥, 𝑡) = 𝑥𝑡
and (𝑥 + 𝑡)∕2 at fixed 𝑡 = 0.5

F IGURE 13 Plots of 𝑤(𝑥, 0.5) with
𝜆 = 1, 𝛿 = 1, 𝐷1 = 1, 𝑉1 = 1 and 𝛾(𝑥, 𝑡) = 𝑥𝑡
and (𝑥 + 𝑡)∕2 at fixed 𝑡 = 0.5

F IGURE 14 Plots of 𝑤(𝑥, 0.5) with
𝜆 = 0, 𝛿 = 1, 𝐷1 = 1, 𝑉1 = 0 and 𝛾(𝑥, 𝑡) = 𝑥𝑡
and (𝑥 + 𝑡)∕2 at fixed 𝑡 = 0.5
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7 CONCLUSION

To solve the non-linear space-time variable-order reaction–advection–diffusion equation, the shifted Legendre collocation
method is applied by using operational matrices for integration, partial derivative and variable-order fractional derivative.
The efficiency of the proposed model is validated by comparing the results obtained by the proposed method with the
existing analytical results through error analysis. The effects of advection and reaction terms on the solution profile with
different values of space and time variable-order derivative have been presented graphically. Themain point of observation
in this article is that the diffusivity of solute concentration is directly proportional to the non-linearity of the variable-
order derivative.
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