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Abstract 

Expansion and contraction of myocyte cells present in heart is responsible for 

pumping of blood in order to achieve circulation of blood to different parts of 

the body. The regulation of calcium concentration at different levels in the 

myocyte cells is required for expansion and contraction of myocytes. The 

mechanism of calcium regulation in myocytes is still not well understood. In 

this paper a finite element model is proposed to study the calcium regulation in 

circular shaped myocytes for a one dimensional steady state case. The processes 

like advection, diffusion, excess buffer and source influx are incorporated in the 

model. Appropriate boundary conditions have been proposed based on 

biophysical properties of region. Numerical simulation have been preformed to 

study the individual as well as coordinated effects of buffers, source influx, 

advection and diffusion on calcium distribution in myocytes. 

Keywords: Cardiac myocytes, advection, reaction diffusion equation, excess 

buffer, finite element method 

 

INTRODUCTION 

Heart is responsible for blood circulation in the human body. This blood circulation is 

essential for maintaining structure and function of different organs of the body. 

Expansion and contraction of myocyte cells present in the heart is responsible for 

pumping of blood in the body through blood circulation system. The specific calcium 

regulation is required for expansion and contraction of myocytes, which is still not well 

understood. The intracellular binding proteins which are already present in the cell bind 

with calcium ion which results into the contraction of cardiac myocytes. The separation 
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of bonded protein from calcium ion results into the expansion of cardiac myocytes. 

Smith G. D. et al 1 Calcium regulation is maintained by various processes like source 

influx, buffer, diffusion and advection etc. In cells, the advection of calcium ions may 

occur due to mechanical contraction of the cell surface or due to significant transport 

of material through cytosolic fluid. Due to advection, there is a cross flow of calcium 

ion which occurs in the cytoplasm of cell. Panday S. et al 2 ,J ha B. K. et al 3 . Attempts 

are reported in the literature for the study the study of calcium distribution in neuron 

cell, astrocytes cell, fibroblast cell, Oocytes cell, acinar cell etc. Jha A et al 4, Jha B K 

et al 5,6, Kotwani M et al 7,8, Manhasn N et al 9,10,11, Naik P et al 12,13, Panday S et al 14, 

Tewari S et al 15,16 . But very few attempts are reported in the literature for the study of 

calcium regulation in myocytes. Backx P H et al 17, Luo C H et al 18, Michailova A et 
al 19. Most of the studies reported on calcium regulation in myocytes are experimental. 

Michailova A et al 19, Shannon T R et al 20.   Some attempts have been made by research 

works to study the effect of advection and diffusion in astrocytes and Oocytes. Jha B K 

et al 21, Panday S et al 2. But no attempts are reported in the literature for study the 

effect of advection on calcium regulation in cardiac myocytes. Also no attempt has been 

made so far in the past to study individual and coordinated effect of advection, 

diffusion, buffers and source influx on calcium concentration regulation in myocytes. 

In the present paper a model is proposed to study the effect of individual and 

coordinated effect of source influx, buffer, diffusion and advection on calcium 

regulation in myocytes for a one dimensional steady state case. The finite element 

approach has been employed to perform numerical simulation. 

 

MATHEMATICAL FORMULATION 

onsider reaction of calcium with buffer as  
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where Bi and CaBi are free and bound buffers respectively, and i is an index over buffer 

species. Smith G D et al 1, Panday S et al 2. ki
+ and ki

- are association and dissociation 

rate constants for i respectively. Using mass action kinetic law and Flicks’ law, the 

advection diffusion equation of calcium concentration for reaction given by equation 

(1) in polar cylindrical coordinates for one dimensional steady state case in presence of 

excess buffer can be stated as Smith G D et al 1, Panday S et al 2.  
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and 
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Here [𝐶𝑎2+]∞ is the background free 𝐶𝑎2+ concentration. [𝐵𝑖]∞ and [𝐶𝑎𝐵𝑖]∞ are the 

equilibrium concentrations of free and bound buffer to cause 50% of buffer will be in 

calcium bound form with respect to index i. [Bi]T is total buffer concentration in the 

cell. Jha A et al 4. Ki is dissociation constant. V represents the velocity of cytosolic 

calcium ion due to advection. Smith G D et al 1. DCa is diffusion coefficient. [Ca2+] 

denotes the concentration of calcium. The point source due to L-type calcium channel 

of calcium is assumed at first node r = 0.01 µm. Thus the appropriate boundary 

condition can be taken as Shannon T R et al 20 
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Here an influx of free Ca2+ is taken at the rate Ca  by Faraday’s law Jha A et al 21, Luo 

C  H et al 22, Ca
Ca

I
zF

  , where ICa, z and F are  amplitude of Ca2+ release, valence of 

calcium ion and Faraday’s constant respectively. Let the background concentration of 

Ca2+ is 0.1 µM  on the boundary of the cell at r = 7.8 µm Luo C H et al 18, Jha A et al21  

2 2
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Now the finite element method is employed to solve equation (2) with boundary 

conditions (5) and (6). The one dimensional finite element discretization is given by 

figure1, 

 

Figure 1: One dimensional finite element discretization 
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Here ei denotes the ith element. And ri and ri+1 denotes initial and terminal nodes of ith 

element. 

The discretized variational integral of equation (2) is given by 
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Here, ‘y’ is used in lieu of 2Ca     for our convenience, e = 1, 2, …, N (number of 

elements). 

The thickness of each element is very small, therefore ( )ey  is assigned linear variation 

with respect to position as given by  
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In matrix form the equation (8) can be written as 
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Also at nodal points ri and rj of the eth element, 
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Using Equations (9)-(11) we get  

( ) ( ) ( ) (12)e e ey P A  

where 

           

( )

( ) ( )

( )

1

1

e
i ie e

e
j j

r y
P and y

r y
  

    
    

 



Finite Element Simulation of Advection Diffusion of Calcium in Myocyes ….. 15 

From Equations (8) and (12) we get 
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Now the integral given in equation (7) can also be written in terms of nodal values as, 
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This leads to following system of linear algebraic equations 
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Here,  1 2 1

T
Ny y y y     , K is characteristic matrix and F is characteristic 

vector. Gauss Elimination method is employed to solve the system (16). A computer 

program has been developed in MATLAB 7.10 for the entire problem and simulated on 

Core i5 processor with 2.40 GHz processing speed, 64-bit machine with 320 GB 

memory.  

 

NUMERICAL RESULTS AND DISCUSSION 

The values of biophysical parameters used for numerical simulation are given in Table 

1. Michailova A et al 19. The results were computed by taking 100, 200 and 400 elements 

for the same region of the cell. The difference in calcium concentration at a node r = 

0.01 is 0.0778 for results between 100 and 200 elements and 0.044 for 200 and 400 

elements, which amount to relative error of 8% and 4% respectively. But at the node r 

= 0.08 relative error for 100 and 200 elements is 1% and for 200 and 400 elements is 

0.2%. The relative errors for the nodal points r = 0.08 to r = 7.8 for both cases are found 

to be less than 1%. Thus the error is not significant and grid with 100 elements gives 

very good results and the results are fairly independent of the grid. In view of above in 

this section the results obtained by taking grid size of 100 elements have been presented. 

 

Table 1: Numerical values of biophysical parameters Michailova A et al 19 

R Radius of the cell 7.8 m  

CaI  Amplitude of elemental Ca2+ release 1 p A 

F Faraday’s  constant 96500 C/mol 

Z Valence of Ca2+ ion 2 

DCa Diffusion coefficient of free Ca2+  in cytosol for Troponin C 780 
2 /m s  

 1 T
B  Total concentration for each Ca2+ buffer of Troponin C 70 M  

k   Association rate constant for Ca2+ binding of Troponin C 39 
1 1M S  

 

k   Dissociation rate constant for Ca2+ binding of Troponin C 20 S-1 

K  Dissociation constant of Troponin C  / ,i ik k   0.51 M  

 Ca


 Intracellular free Ca2+ concentration at rest 0.1 M  
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Figure 2: Calcium distribution along radial direction without and with advection 

 

Figure 2 shows the calcium distribution along radial direction in absence and presence 

of advection. The maximum calcium concentrations observed are 0.9562 µM in 

absence of advection and 0.9667 µM in presence of advection at source i.e. at r = 0.01 

µm. As we move away from the source the calcium concentration decreases sharply 

from r = 0.01 µm to r = 0.7111 µm and reaches 0.1745 µM and 0.1774 in absence and 

presence of advection respectively. As we move further away from the source from r = 

0.7111 µm to r = 3.113 µm the concentration of calcium decreases to 0.1041 µM and 

0.1047 in absence and presence of advection and thereafter it achieves its background 

concentration 0.1 µM.  
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Figure 3: Difference of calcium concentration in absence and presence of advection 

for different values of source influx. 

 

Figure 3 shows the difference of calcium concentration in absence and presence of 

advection at different source influx values 1 p A, 2 p A, 3 p A and 4 p A. The maximum  

differences at source r = 0.01 µm are  0.012 µM for source influx 1 p A, 0.018 µM for 

source influx 2 p A, 0.026 µM for 3 p A and 0.035 µM for 4 p A. The effect of source 

influx on advection observed more near the source. But as we move away from the 

source from r = 0.01 µm to r = 1 µm the differences in calcium concentration due to 

absence and presence of advection decreases sharply due to advection and buffering 

process. From r = 1 µm to r = 2 µm these differences in calcium concentration gradually 

decrease and thereafter become zero as calcium concentration achieves its background 

concentration 0.1 µM. It shows that the effect of advection increases in ratio of source 

influx. 



Finite Element Simulation of Advection Diffusion of Calcium in Myocyes ….. 19 

 

Figure 4: Difference of calcium concentration in absence and presence of advection 

for different values of buffer concentration. 

 

Figure 4 shows the difference of calcium concentration in absence and presence of 

advection at different buffer concentration 50 µM, 100 µM, 150 µM and 200 µM. The 

maximum calcium concentration differences due to absence and presence of advection 

at source r = 0.01 µm are 0.013 µM for [B] = 50 µM, 0.008 µM for [B] = 100 µM, 

0.0007 µM for [B] = 150 µM and 0.00058 µM for [B] = 200 µM. The effect of buffer 

concentration on advection observed more near the source. But as we move away from 

the source from r = 0.01 µm to r = 1 µm the differences in calcium concentration 

decreases sharply due to buffering process.  From r = 1 µm to r = 2 µm these differences 

in calcium concentration gradually decreases and thereafter become zero as calcium 

concentration achieves its background concentration 0.1 µM.  It is also observed that 

the effect of advection decreases in ratio of increase in buffer concentration. 
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Figure 5: Difference of calcium concentration in absence and presence of advection 

for different values diffusion coefficient. 

 

Figure 5 shows the difference of calcium concentration in absence and presence of 

advection for different values of diffusion coefficient i.e.  200
2 /m s , 400

2 /m s , 

600
2 /m s and 800

2 /m s . The maximum calcium concentration difference at source 

r = 0.01 µm are 0.06 µM for diffusion coefficient 200
2 /m s , 0.024 µM for diffusion 

coefficient 400 
2 /m s , 0.014 µM for diffusion coefficient 600 

2 /m s  and 0.01 µM 

for diffusion coefficient 800 
2 /m s observed. But as we move away from the source 

from r = 0.01 µm to r = 1 µm these differences in calcium concentration decrease 

sharply. From r = 1 µm to r = 2 µm the differences in calcium concentration gradually 

decrease and thereafter become zero as calcium concentration achieves its background 

concentration 0.1 µM. It is also observed that at higher value of diffusion coefficient 

the effect of advection is very less. That means the effect of advection decreases in ratio 

of diffusion coefficient and diffusion process dominates the advection process. 
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CONCLUSION 

Finite element models are proposed and employed to study one dimensional calcium 

distribution in Cardiac Myocytes involving multi physical process like source influx, 

excess buffer, advection and diffusion for steady case. The model gives us interesting 

spatial calcium patterns in relation to these multi physical processes in cell. The results 

indicate that the effect of advection increases on calcium concentration increases in 

ratio of increase in influx.  The results show that the effect of advection on calcium 

concentration decreases in ratio to buffer concentration. The effect of advection 

increases with decrease in the diffusion coefficient. Thus it can be concluded that at 

lower values of diffusion coefficient the advection comes into play for regulation of 

calcium concentration in myocytes. However for higher values of diffusion coefficient 

the diffusion process dominate over advection in calcium regulation in myocytes.  

From the above results it can be concluded that the myocytes cell has a beautiful 

mechanism involving well-coordinated effect of parameters like source influx, buffer, 

advection  and diffusion coefficient in regulating the [Ca2+] required for maintaining 

the structure and function of the cell. The finite element approach used here is quite 

versatile as it gives us flexibility to incorporate important parameters in the model. Such 

models can be developed further to generate information of calcium signaling in 

myocytes required for contraction and expansion of myocytes which is responsible for 

circulation of blood in the body. It can be of great use to biomedical scientist for 

developing protocols for diagnosis and treatment of diseases related to heart. 
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