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Abstract

In recent years, the proliferation of Software-Defined Networking (SDN) has revolutionized network man-
agement and operation. However, with SDN’s increased connectivity and dynamic nature, security threats
like Denial-of-Service (DoS) attacks have also evolved, posing significant challenges to network admin-
istrators. This research uses the GraphSAGE algorithm to improve DoS attack detection using SDN and
Graph Neural Network (GNN) to address the abovementioned problems. The study further explores the ef-
fectiveness of four anomaly detection techniques - Histogram-Based Outlier Score (HBOS), Cluster-Based
Local Outlier Factor (CBLOF), Isolation Forest (IF), and Principal Component Analysis (PCA) - to iden-
tify and mitigate potential DoS attacks accurately. Through extensive experimentation and evaluation, the
proposed framework achieves an better accuracy of detecting the anomalies than one without GraphSAGE
model underscoring its potential to strengthen the security of SDN architectures against DoS attacks.

Keywords: Software Defined Network, Graph Neural Network, Anomaly Detection, Denial-of-Service,
Control plane, Data plane, Network security

1. Introduction

A denial of service (DoS) attack is a simple yet devastating network attack. An attacker often creates
susceptible nodes on the internet that are transformed into a botnet and uses these scattered hosts to generate
a large number of packets with forged IP addresses to execute an access attack on the victim server. This
kind of attack consumes all the resource of the victim’s server and crash them so that the victim’s server is
unable to process the normal request, that is, denial of service [1] [2] [3].

DoS attack is widespread, and SDN is also affected by this kind of network attack [4, 5]. Nowadays,
in the open-flow era, DoS attacks on the SDN mostly occur on the control plane. For example, an attacker
generates a huge network of attack flows that do not match the flow table rules. Every attack sequence
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will trigger the switch to transmit a message packet to the controller, potentially blocking the southbound
interface and substantial resource consumption on the controller’s end [6].

With the extensive use of data plane programmable SDN, data plane attacks have grown more prevalent
[7]. For example, an attacker may infiltrate a host within the SDN and transform into another user in the
network, wasting resources such as memory and compute power [4, 8]. This form of DoS attack, specifically
flooding DoS attacks on the SDN. A similar kind of attack is a serious threat to the SDN network. They can
be launched from anywhere worldwide and are difficult to defend against attacks.

Machine learning provides a novel technique for detecting network attacks in this circumstance. To
discover the best outcomes, machine learning methods, particularly deep learning-based neural networks,
may be applied [9]. Traditional ML techniques (Non-Graph) do not completely use the structure of network
topological information in network flow data to identify complex network attacks [10]. We may utilize the
GNN since it can identify entire network attacks with interconnected data structures.

Graph-based learning for big graph processing necessitates greater computation time and expenditure;
hence, permutation-invariant algorithms are necessary. As a result of using the sampling and aggregation
method, Graph Sample and Aggregated (GraphSAGE) may perform a quicker computing process, eliminat-
ing the need to rely on the fixed graph structure [11]. GraphSAGE is used for node embedding. However, in
article [12] updated it to give an edge embedding solution to the network infiltration problem. The sampling
procedures were the subject of GraphSAGE’s major concern.

The model proposed in [13] use the edge features to improve GraphSAGE performance for network
intrusion detection. In this approach, important information is embedded as edge features while the rest
as node features. The model shows a good result for multiclass classification problem. However, the SDN
framework and its underlying controller and data plane features are not explored to a significant extent. In
model [14], GraphSAGE is learn the features of switches through host embedding, then the information
learned is used for weight induced limiting scheme for penalizing misbehaving hosts. The GraphSAGE is
used here at the controller and switch level for DDos attack consideration. The model proposed in [15],
rearranges the node features to embed it into the graph learning for multi class flow detection, including
the DOS Attack. The host information are infused into the node embedding and then fed to GraphSAGE
for identifying intrusion detection. Here, Graph learning is constrained to the embedding learning of host
and their interconnected edges only. While, the SDN specification are not exploited in full nature. The
approach proposed in [16], authors have used GNN ensemble learning. GNN is a type of ML method to
which uses various GNN models to enhance the detection accuracy. Recent solutions have used data-driven
learning [17] Graph Convolution Network (GCN) [18] and Graph Attention Network (GAT) [19] to improve
classification performance over GraphSAGE, but require a long computational time [20]. To achieve the
optimal outcome, a causal weight was calculated between the neighbour target node and the label and then
added to the original GraphSAGE sample. This causal sampling approach provides the highest performance
increases and requires the least processing effort. Most of the existing approaches focuses on improving the
node features and edge features of the graph to improve the intrusion detection. Also, the significant work
focuses on the control plane of SDN. However, they don’t exploit the intrinsic characteristic of underlying
data plane of SDN. In our proposed work, we integrate SDN with the network benefit of GraphSAGE model
for detecting the DoS attack. Our work signifies the importance of data plane in anomaly detection.

1.1. Research Contribution

The main research contribution of this paper is given below:

e We proposed a GNN-based Anomaly detection technique for network intrusion detection. The ap-
proach detects both edge features and topological patterns in the absence of label data.
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o We uses the GraphSAGE model, redesigned DGI and applied four alternative anomaly detection
methods. The techniques used for network intrusion detection are PCA based anomaly detection, IF,
CBLOF based anomaly detection, and HBOS based anomaly detection.

o We applied the GraphSAGE model to Network Intrusion Detection System (NIDS) datasets to dis-
cover network anomalies. Through experimental examination, a considerable improvement over raw
characteristics reveals its potential.

e We developed and configured the network using SDN and then convert it to a three-dimensional
network state tensor that reflects the properties of all the switches at various moments. The Graph-
SAGE model is used to identify DoS attacks across the data plan. The data plan programmable SDN
identifies DoS attacks and traces their movements.

The rest of the paper is organized as follows: Section 2 discusses the background of the proposed work.
Section 3 presents the problem formulation and mathematical modeling for the proposed work. Section
4 describes the proposed framework. Section 5 presents experimentation, results, and analysis. Finally,
Section 6 concludes the paper with future research directions.

2. Related Work

Anomaly detection is a critical aspect of network security. The major task of anomaly detection is
to detect the abnormalities and deviations of a network from its regular behavior. There have been sev-
eral anomaly detection approaches, like traditional network approaches, SDN-based approaches, ML-based
approaches, and Hybrid approaches. However, dealing with complex and large data using these basic ap-
proaches can take time and effort. It demands the need for advanced and sophisticated approaches to detect
anomalies. Deep learning-based techniques work well in this direction and help achieve better anomaly
detection performance in SDN. Here, our major work is driven toward detecting DoS in SDN using the
advanced DL-based approach. SDN has numerous applications in the data center scenario, offering benefits
such as network programmability, flexibility, and centralized management. One crucial area where SDN
can be particularly useful is detecting DoS attacks. DoS attacks involve many compromised devices flood-
ing a target network or service with overwhelming traffic. Detecting and mitigating such attacks requires
a comprehensive understanding of the network’s traffic patterns and the ability to differentiate legitimate
traffic from malicious traffic.

Denial of Service attacks are pervasive and heavily impact SDNs [4] [5]. The DoS attacks mostly target
the control plane in SDN. For instance, many attack flows that don’t match the flow table rules are generated,
blocking the SDN framework’s southbound interface and eventually affecting the resource consumption on
the controller’s side [6]. The prevalence of programmable SDN has also led to increased attacks on the data
plane. For instance, one common attack is compromising the SDN host and using it as a bot to launch attacks
against other users in the network. These attacks aim to exhaust resources like memory and computational
power [4] [8]. These attacks pose a significant threat to SDN networks as they can originate from anywhere,
globally, and are challenging to defend against.

Deep learning-based approaches are promising solutions for detecting DoS attacks in the current techno-
logical trends. Deep learning methods include Auto Encoder, Long Short Term Memory, Recurrent Neural
Networks, Generative Adversarial Networks, and many others. These deep learning approaches fail to fully
exploit the network topological structure and its information inherent in the network flow data [10]. To
better analyze such networks and their inherent structure, Graph-based Neural Networks are preferable [9].
The GNNs have the strength to detect complete network attacks with interrelated data structures. GNN
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also provides an advantage of peer learning to the network nodes.There have been several work carried out
in the direction of incorporating graph knowledge for anomaly detection in IDS. A detailed overview of
graph based anomaly detection is presented in [21] by the researchers. It is based on taxonomy of anoma-
lous component present in the graph, the category of the graph, i.e. static or dynamic, types of graph
techniques, type of anomaly and type of applications. The article [22], explores an application oriented
graph representation learning for detection of network intrusion and host intrusion through usage of GNN
based techniques. It also presents a graph structured data and its characteristics required for the same. It
signifies the impact graph learning leaves without the need for external knowledge of domain. In article
[23], the utility of anomaly detection based machine learning and deep learning model is presented with a
view on smart surveillance, sensor networks and local area networks. Further it presents the graph based
applications and use case in anomaly detection based on federated learning, auto encoders, embeddings of
graph, transformers, signal processing and contrastive learning. The research work [24], presents a graph
based anomaly detection and analytics techniques. It presents graph techniques based on convolution, auto
encoders, attention mechanism and other approaches. These recent surveys, validates the significance of
usage of graph learning in Intrusion detection and paves us the path for future research.

Incorporating graph-based neural network models demands large processing capabilities and computa-
tional time. It requires the operations to be permutation invariant. GraphSAGE is a GNN-based model that
works in the same direction and provides a faster computational process through sampling and aggregation.
It eliminates the need for fixed graph structure [11]. Here, we use the GraphSAGE-based model alongside
SDN for anomaly detection. The general application of GraphSAGE is for node embedding, [12] modified
it to edge embedding to solve the network intrusion problem. Several other GNN-based approaches have
been validated for anomaly detection like data-driven learning based [17], GCN [18] and GAT [19] to im-
prove classification performance above the GraphSAGE model. However, they are time-intensive. In article
[20], a causal inference calculates the casual weight between the neighbour target node and the label. Then,
those weights are used to the original GraphSAGE sampling to produce the optimal result. This causal
sampling approach provides the highest performance increases and requires the least processing effort.

Graph-based learning for big graph processing necessitates greater computation time and expenditure;
hence, permutation-invariant algorithms are necessary. By utilizing the GraphSAGE model in a DoS attack
setup, we can create a graph representation of the network, where each node represents a device or network
entity, and the edges represent connections or communication links [25]. This graph can capture the in-
herent relationships and dependencies within the network. The model can then be trained on this graph to
learn representations of the network entities. These representations encode valuable information about the
characteristics and behaviors of the devices and their relationships. The model can detect anomalies and
identify potential DDoS attacks by analyzing the node representations and patterns. The generalized system
model using GraphSAGE with SDN is represented in Figure 1.

3. Problem Formulation

The data plane in SDN networks is also vulnerable to DoS attacks. The data center is presently the most
extensively utilized component in SDN, and DoS attacks within the data center are becoming increasingly
widespread. In the current experimental scenario, the prime focus is on the data center in SDN architecture;
the bot compromised attacker and victims reside in the same network. The attacker needs to learn about the
network topology. It compromises data center hosts to launch a DoS attack. The attacker aims to deplete
a server’s resources or block a link in the data center, disrupting regular traffic and preventing the network
request from being fulfilled within the time limit. When the attacker launches an attack on multiple hosts
simultaneously, the attack flow enters the network from the edges and switches, eventually disturbing the
network and overlapping the attack paths.
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Figure 1: SDN-based GraphSAGE System Model

The SDN in the current model is represented using the graph. In graph G = (V, E), the V represents the
network nodes and devices, and E represents the edges between the controller, switch, and host device. The
feature matrix linked with the network nodes is denoted by X, and each row X; relates to the node’s features
vi € V. Let A be the adjacency matrix of the network graph G, with A;; = 1 if there is a direct link between
node v; and v; and A;; = 0 otherwise. The ground truth labels Y indicate whether each node is anomalous
(label 1) or normal (label 0). Network anomaly detection aims to develop a mapping f : X — Y that can
properly categorize each network node as normal or anomalous based on its attributes and the structural
information of the network.

We use a GNN-based model to capture the structural relationships in the network graph. To generate
node embeddings, the GNN uses node characteristics and graph topology. SDN is used to regulate and
monitor the network’s behaviour in real time. SDN allows us to change network flows, redirect traffic, and
respond to new anomalies. The SDN controller’s actions are defined as a series of rules R that determine
network policies depending on observed anomalies. The identification of anomalies is formalized as a bi-
nary classification job. To produce predictions, we integrate the learned GNN embeddings with the SDN
rules R. This model combines GNN and SDN capabilities to give a comprehensive approach to anomaly de-
tection, combining structural information and dynamic network control to improve accuracy and flexibility.
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Figure 2: GraphSAGE Architecture

4. Proposed SDN based Framework

Our major focus is to detect the DoS attacks on the data plane, rather than the control plane in the usual
scenario, using the SDN. It detects the attack’s source and attack path to formalize a security strategy for
the future occurrence of such malicious activities. The programmable switches are used with a fine-grained
network state acquisition technique. This network state is used for developing a DoS detection model on top
of GraphSAGE at the controller level. Figure 2 shows the architecture of GraphSAGE. A focused security
strategy is built using the detected data and network traffic; this helps in transmitting correct information to
the controller for further consideration. Network state awareness model, DoS attack detection model, and
the implementation of a targeted defense strategy are shown in Figure 3. The subsequent part of this section
explains the proposed model’s working and operational algorithm.

The control level works as a binding entity for the entire architecture. Its flow table has access to the
network state data and shared store data of each switch. The controller in our architecture is modified to
incorporate the GraphSAGE model. In the context of a SDN, a graph is constructed with nodes representing
entities like switches, devices, and subnets and edges representing the relationships or connections between
them. Pertaining to the context shown in the Figure 1, the 9 OpenFlow switches and 64 Host System will
work as nodes and edges will represent the connection and communication among them. The nodes in the
graph represents the raw embeddings of the switch or host systems like node features, payload information,
header, output, metadata and others. Using the GraphSAGE model the user neighbor selection is carried
out which will enhance the user node feature through graph aggregation and update mechanism in iterative
process. The learned embeddings are then fed to anomaly detection module for finding anomalous nodes.
The model learning are then back propagated to host for model learning. The interception through node
embeddings learned in GraphSAGE will allow us to find anomalous traffic in data plane directly through
the neighbor learning process. This will also help to stop the incoming malicious traffic from network
switch itself. The GraphSAGE model is trained using the adaptive interval sampling strategy to minimize
additional CPU resources and bandwidth usage. The detection model and packet header are processed at
the controller to give fine-grained network status. The network is modeled as a spatial-temporal graph on
the controller side to maintain network state change. The collected data is translated into a two-dimensional
tensor at the controller, comprising each switch’s feature vectors at various instances. The obtained two-
dimensional tensor and the network architecture adjacency matrix are inputs for the DoS attack detection
model. Convolutions are applied to the tensor by the detection model to extract temporal features, capturing
the temporal properties of the data. The adjacency matrix is also used to apply convolutions to the tensor
to extract spatial features and investigate how the states of neighboring nodes affect one another spatially.
The model locates switches that host DoS attack flows and establishes the path through which these attack
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flows are propagated inside the network by analyzing and learning temporal and geographical aspects.
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Figure 3: Proposed SDN Architecture

The network model used for development incorporates the Mininet network emulator along with an
SDN controller. This combination provides a comprehensive overview of the network environment. Mininet
is utilized as a network emulator, enabling the creation of a virtual network topology with virtual hosts,
switches, and links. The SDN controller acts as the central management entity responsible for controlling
the behavior of the virtual switches and facilitating communication between the emulated network compo-
nents. Mininet and the SDN controller form a robust framework for simulating the attack detection model.
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After training, the tuned GraphS AGE model was used to create edge embeddings for the training and testing
graphs. Four methods were used to detect anomalies: PCA, IF, CBLOF, and HBOS. Each algorithm was
trained unsupervised using the edge embeddings provided by the graph. The embeddings are sent into the
anomaly detection model as input. Both infected and non-contaminated training samples were used in the
studies.

Grid searches were performed for each detection method in each trial to guarantee optimal parameter
optimization. Grid searches entailed experimenting with different values for the contamination parameter,
the number of PCA components, the number of estimators for IF, the number of clusters for CBLOF, and
the number of bins for HBOS. After the training phase, the edge embeddings from the test set were used
for unsupervised model evaluation. The PCA algorithm used for finding anomalies in this study [26] is
an improved variant of the traditional PCA algorithm, specifically designed for anomaly detection rather
than dimensionality reduction. This method begins with a PCA reduction on a set of “normal” samples to
generate a correlation matrix. This “normal” correlation matrix is a benchmark for the algorithm’s following
outlier detection phase. In other terms, an outlier is a sample that deviates considerably from the typical
correlation matrix.

The IF anomaly detection technique [27] employs tree structures to isolate and detect anomalous sam-
ples. Samples isolated closer to the tree’s root are identified as anomalies, while samples located deeper
in the tree are considered “normal.” An isolation forest is constructed to facilitate this process by utilizing
an ensemble of trees. The IF algorithm is widely recognized for its effective and accurate identification of
anomalies, achieving efficient performance.

The CBLOF algorithm [28] handles anomaly detection as a clustering-based issue. It groups samples
and assigns an outlier factor based on the size of the cluster to which the sample belongs and the distance
between the sample and the nearest cluster. This outlier factor measures the amount of deviation displayed
by the sample, which is then used to determine whether or not it is an anomaly.

In contrast to the cluster-based approach of CBLOF, the HBOS algorithm [29] adopts a histogram-based
methodology for anomaly detection. This technique involves constructing a univariate histogram for each
feature, with each histogram consisting of multiple bins. Bin densities are derived by counting the occur-
rence of samples within each bin across all histograms. The calculated density values for each histogram
are then utilized to determine the HBOS score, ultimately determining whether a sample is considered an
outlier.

Algorithm 1 represents the proposed real-time anomaly detection model using the concept of Graph-
SAGE. Here, the SDN controller plane and data plane devices are already fixed, and the network data is
gathered from those planes. The essential features of the preprocessed network data are then fed to the
graph for representation purposes. The entire graph G(N, E) represents the SDN using N network nodes
and E edges. X represents the feature matrix of network nodes, where each signifies the feature of a single
node. The feature matrix is populated using the information obtained from the dataset. Equivalent to a
feature matrix is a Y label vector; it indicates where a specific node is anomalous or normal. All the in-
formation are then fed to the GraphSAGE model for training purpose. GraphSAGE generates the network
node embeddings in the training phase, Z. An anomaly detection threshold, 7', is defined using the normal
distribution of embeddings with u mean and o standard deviation. The parameter « is the number of stan-
dard deviations selected for finding anomaly. It indicates the sensitivity of the anomaly detection carried
out. If a value lies outside the range, then it is considered anomaly. Anomaly threshold 7" will work for
defining whether a node is anomalous or not. After the model is trained, it is used for real-time network
monitoring. The Graph Inference model activates and updates the graph representation during monitoring.
The newly learned graph representation G, and node features X,,,, are used to generate the updated and
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new graph embeddings Z,.,,. The new node embeddings are compared with the learned threshold, 7. All
the nodes for which the anomaly is detected are stored in A. If the embeddings exceed the threshold, their
labels, Y[i].label, are marked as anomalous. The updated network information of anomalous nodes is re-
turned to the administrator for further consideration and action. The network monitoring is continuous and
will continue until the network is active. The time complexity of GraphSAGE is mainly dependent on the
number of nodes, N, number of edges, E, neighbors of the nodes, S and layer L. The neighbor sampling
takes O(N X E x L) time and aggregation of features takes O(N X E X L X §) time. So, the time complexity of
training phase is O(N X E X L x §). The computational complexity of our algorithm is of polynomial order
that will not hinder the scalability of the proposed system. Further, the complexity multiplies depending on
the hidden features taken into consideration. The time for inference is linear to the number of nodes present
in the environment as it involves the validation of whether a node is anomalous or not. The intrinsic nature
and sampling strategies of GraphSAGE algorithm make it possible to work with large graphs.

Algorithm 1 Real-time Anomaly Detection using GraphSAGE in SDN
Require: Graph G(V, E); Node Feature Matrix X; Anomalous Label Y
GraphSAGE Training and Anomaly Threshold:
Z « GraphSAGE_Train(G, X, Y)

pey Z Zi
o\ S Z - P
T—u+a-o > @ is a tunable parameter.

Real-time Monitoring:
while Operational(Network) do
Znew < GraphSAGE Inference(Gpew, Xnew)
A —{i| Zyew; > T}
for iin A do
Ghew-Y[i].label < ’Anomalous’
end for
end while

5. Result and Analysis

SDN and GNN have a substantial impact on bringing transformation capabilities into network anomaly
detection. By offering centralized control and programmability, the model transforms how network man-
agement can be carried out. The proposed model shows the same capability for network intrusion detection
(IDS). Two models have been compared here, one with and one without GraphSAGE, to show the impact
of GNN in the IDS task. For the intrusion detection, we have used four techniques, PCA, IF, CBLOF and
HBOS. This section provides the details of the experimental analysis carried out.

5.1. Anomaly Detection Techniques

This section discusses the techniques used to detect anomalies in the proposed model.

5.1.1. Principal Component Analysis
Principal component analysis technique is a extensively used in data analysis and ML for feature extrac-
tion and dimensionality reduction. It convert the high dimensional data into low dimensional data preserving

9
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the variance in the original data. PCA is useful to balance the dataset when it is unbalanced in nature. PCA is
widely used for detecting anomalies in the given datasets and helps to understand and visualize the existing
representation of the data.

5.1.2. Isolation Forest

Isolation forest is a ML based anomaly detection technique, which efficiently identifies the anomalies
from the dataset. Isolation forests are built using decision trees, like a random forest. It uses binary parti-
tioning to quickly remove the anomalies from a dataset. It takes very less time to identifies outliers, making
it suitable to detect anomalies in various applications. The advantages of IF includes its scalability, toler-
ance for outliers, easy to implement and handling high-dimensional data. It is used in many applications
such as cybersecurity, finance and healthcare.

5.1.3. Histogram-Based Outlier Score

Histogram-Based Outlier Score is an unsupervised anomaly detection technique that uses histograms to
find the outliers in the given dataset. It require complex computation to detect anomalies. It is very efficient
and speedily find the outliers that makes it suitable for enormous datasets. HBOS create histograms for the
feature distribution and then compute an outlier score using these histograms.

5.1.4. Cluster-Based Local Outlier Factor

Cluster-Based Local Outlier Factor identify the outliers using the combination of local distances to
nearby clusters and the size of the data points clusters. It scales distances between observations and cluster
centers by cluster sizes, allowing for flexibility in choosing clustering methods

5.2. Dataset

The dataset used for the experiment is NF-CSE-CIC-IDS2018-v2. This benchmark dataset is specially
tailored for research in network intrusion detection, curated by the Canadian Institute for Cybersecurity
(CIC). The dataset comprises network traffic data. It includes details of network flow, like source and
destination IP addresses, port numbers, protocol types, packet sizes, duration, and labels. The labels present
are “normal” and intrusive”. It indicates whether a traffic flow is malicious or not. The parameters that we
included for usage in models includes address of the source, port number, address of the destination, port
number, packet size, and label indicating whether a message or payload is of DoS attack or not.

5.3. Tools & Technology

For the implementation of SDN and GNN, a wide range of tools and technologies are available, in-
cluding POX, NOX, Ryu, OpenDaylight, Floodlight, PyTorch Geometric, Graph Nets, Deep Graph Library
(DGL), and Spektral. We used POX, PyTorch Geometric, DGL, and Graph Nets. POX SDN controllers are
open-source SDN controllers with a Python-based programming interface. PyTorch Geometric, DGL, and
Graph Nets are GNN development libraries. PyTorch Geometric allows for large-scale graph processing
flexibility. The details of these tools & technologies are mentioned in Table 1.

5.4. Parametric Setting & Evaluation Metrics

Table 2 show the parameters and hardware used in the SDN framework development. Here, we are
using Hping3 for traffic generation and considering a DoS attack. In CBLOF, we carried out evaluation of
cluster size of 2,3,5,7,9, and 10. For PCA and HBOS, the estimator parameter considered are 5,10,15,20,25
and 30. The contamination value is evaluated at 0.001, 0.01, 0.04, 0.05, 0.1, and 0.2 for PCA, HBOS and IF
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Table 1: Tools and Technologies

Sr No. Tool Programming Features
Language
Highly
1 POX Python customized,
Easy to use
Provide wide
2 PyTorc}.l Python, PyTorch range of tools &
Geometric . .
functionality
Python, Supports multiple
backends,
Deep Graph PyTorch, . .
3 . Provides wide range
Library TensorFlow,
of tools and
MxNet . .
functionality
Easy to use,
4 | Graph Nets 15 y%‘)‘r’gh Simple
y interface
Table 2: Experimental Setup
Parameter Value
Platform Intel Core i3, 8 GB RAM
Operating System Ubuntu 20.04 LTS
Type Of Traffic TCP, UDP, ICMP
Traffic Generator Hping3
Type Of Attack DoS
Packet used 200, 600, 1000
Controller Floodlight
Switch OpenFlow Switch
Network Emulator Mininet
Tool PyTorch

model. The estimator for IF is kept at 20, 50, 100, and 150. Here, the contamination provides the proportion
of outliers considered.

To evaluate anomaly detection models, there are several available metrics like Confusion Matrix, Re-
ceiver Operating Characteristic (ROC) Curve, Mean Square Error, Threshold based methods and statistical
methods. Among which the accuracy and detection rate are significantly used in literature. So, to validate
the proposed model, we have considered accuracy and detection rate.

5.4.1. Accuracy
Accuracy defines how accurately our model can detect network attacks. The equation 1 represents the
formula for accuracy measurement.

B TP+ TN 0
ccuracy =
Y TP+FP+TN+FN

T P represents true positives, which refers to the number of switches correctly identified as containing
attack traffic and containing attack traffic. F'P stands for false positives, indicating the number of switches
mistakenly identified as containing attack traffic but do not have any. TN represents true negatives, denoting
the number of switches correctly identified as not containing attack traffic and, indeed, do not have any.
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Finally, FN stands for false negatives, representing the number of switches mistakenly identified as not
containing attack traffic but having attack traffic.

Without GraphSAGE |l With GraphSAGE
100

95
90
85
80
PCA IF

CBLOF HBOS

Accw acy(%)

Algorithm

Figure 4: Accuracy Comparison

5.4.2. Detection Rate

The detection rate of a Denial-of-Service attack using the GraphSAGE Model is calculated using the
equation 2.
Number of correctly detected DoS attacks

Total number of DoS attacks

Detection Rate =

2

Without GraphSAGE |l With GraphSAGE
100

90
70
60
PCA IF

Deteclion Rale
o
=1

CBLOF HBOS
Algorithm

Rate.png

Figure 5: Detection Rate Comparison

Figure 4 and Figure 5 represent the result of accuracy and detection rate for four different variants of the
SDN model with and without GraphSAGE. Here, the four variants are CBLOF, HBOS, PCA, and IF. The
results are validated on the CICIIDS-2018 dataset with contamination. The models using GraphSAGE have
better accuracy than the one without GraphSAGE; the accuracy obtained is 98%, 97%, 98% and 98% as
compared to 94%, 94%, 88%, and 92% respectively for CBLOF, HBOS, PCA, and IF with GraphSAGE and
without GraphSAGE. The anomaly detection rate shows a similar behavior; the detection rate obtained is
94%, 95%, 94%, and 95% as compared to 87%, 86%, 76%, and 81% respectively, for CBLOF, HBOS, PCA,
and IF with GraphSAGE and without GraphSAGE. The overall accuracy of detection of anomalies with the
GraphSAGE model and without GraphSAGE is 97% and 94%, respectively. Algorithms incorporating the
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GraphSAGE model achieve better performance in terms of accuracy and anomaly detection. It is evident
that including graph learning in intrusion detection task can boost performance significantly.

The data at the SDN controller is received from the data from the data plane. The GraphSAGE algorithm
detects anomalies and protects against DoS attacks with the help of GNN and SDN. If the data received is
manipulated or corrupted, it will significantly impact the performance and security of the network. The
corrupted data can lead to wrong route selection, ultimately increasing latency. The corrupted data may
affect the configuration and allow unauthorized access to the network.

6. Conclusion

In this research work, we embarked on a comprehensive exploration of enhancing Denial-of-Service
attack detection within SDN environments. By harnessing the power of the GraphSAGE algorithm, we
effectively captured the intricate relationships between network entities, enabling us to gain deeper insights
into potential malicious activities. Moreover, we evaluated and compared the performances of three well-
established anomaly detection methods - CBLOF, HBOS, PCA, and IF in identifying DoS attack patterns.

The experimental results validate the efficacy of our proposed framework, showcasing an impressive
94% detection rate and 97% accuracy. These outcomes underscore the significance of leveraging ad-
vanced machine learning techniques to fortify SDN architectures against the ever-evolving landscape of
cyber threats. By achieving such high levels of accuracy and detection, we have made a substantial stride in
improving the security posture of SDN networks.

In the proposed model we have used centralized SDN controller to manage the resources centrally.
Though centralized controlling offers good network resources management, it also posses limitations in
case of failure of SDN controller. To overcome this problem, multiple SDN controllers can be used to
handle the issues may arise due to the failure of single SDN controller. In case of failure of one controller
load of the failed controller can be transferred another controller. This will increase the scalability and the
reliability of the proposed model. We need to balance between the overhead of managing the multiple SDN
controllers and accuracy & detection rate to identify the DoS attacks.

However, we acknowledge that the threat landscape continues to evolve, and future work could delve
into the adaptability of our approach to emerging attack vectors and the potential integration of real-time
response mechanisms. Additionally, the scalability of the proposed solution across large-scale SDN deploy-
ments demands further investigation. The proposed work can be extended in future to solve the problem of
single SDN controller failure issue by using multiple SDN controllers. Also other types of attacks can also
be considered while implementing the proposed system using GNN.
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