
IEEE TRANSACTIONS ON MAGNETICS, VOL. 55, NO. 11, NOVEMBER 2019 1401108

Spin-Torque-Based Quantum Fourier Transform
Anant Kulkarni and Brajesh Kumar Kaushik

Department of Electronics and Communication Engineering, Indian Institute of Technology-Roorkee, Roorkee 247667, India

Quantum computing (QC) provides an efficient platform to solve complex problems such as number factoring and searching. The
quantum Fourier transform (QFT) is an integral part of quantum algorithms for integer number factoring, phase estimation, discrete
algorithms, interchange of position and momentum states, quantum key distribution protocol, multiparty quantum telecommunication,
and quantum arithmetic. The theoretical and experimental implementations of QFT on various platforms have been proposed by
researchers. Spin-torque-based qubit(s) manipulation is one of the encouraging solid-state device technologies. However, to date,
QFT is not realized by spin-torque-based QC architecture. In this article, the spin-torque-based architecture has been modeled with
the help of optimized decomposition of quantum circuits for the QFT. Moreover, an optimal-depth Clifford + T gates set-based
quantum circuit is utilized to implement the QFT. The performance analysis in terms of fidelity (>99%), magnitude, and phase
difference of respective density matrices for different forms of three-qubit QFT provides a novel way of its physical realization to
address the complex problems.

Index Terms— Decomposition, density matrix, quantum computing (QC), quantum Fourier transform (QFT), spin Hall effect (SHE),
spin torque, spintronics.

I. INTRODUCTION

COMPLEX computing problems can be solved efficiently
by quantum computing (QC) in comparison with classi-

cal computing [1]. Quantum computers are able to efficiently
solve problems such as unorganized data searching [2], num-
ber factoring [3], counting solution problem [4], hidden sub-
group problem [5], and security of cryptographic systems [6].
Moreover, quantum computers can perform operations in
polynomial time compared to classical computers. However,
the most critical issue with the QC is its physical realization.
At present, the physical realization of QC is possible with
the help of a classical computer and up to some extent by a
quantum computer. However, the technologies for the physical
realization of the quantum computer are not developed enough
to deal with complex computing applications; therefore, most
of the QC-based problems are solved on classical computers.
To get rid of these obstacles, researchers are actively involved
in the implementation of large scale QC. QC developed rapidly
when [7] through his algorithm showed that QC-based integer
number factoring could be performed in polynomial time. The
integral component of the Shor’s algorithm is quantum Fourier
transform (QFT). From the computing point of view, QFT is
one of the most imperative computational problems and finds
its application in discrete algorithms [3], phase estimation [8],
interchange of position and momentum states [8], quantum
key distribution protocol [9], multiparty quantum telecommu-
nication [10], and quantum arithmetic [11].

QFT is physically realized with the help of bulk resonance,
atomic, and solid-state implementations [12]. QFT based on
solid-state technologies shows enormous prospects to realize
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the QC at nanoscale. Recently, a spin-torque-based architec-
ture has emerged as one of the novel technologies to realize
the single-qubit rotation and two-qubit entanglement [13].
However, the number of elementary operations required to
realize the QC with this architecture is an issue due to the
quantum circuit decomposition required for the elementary
level. Therefore, in this article, the optimal decomposition
of the QFT and its realization with the generalized spin-
torque-based QC architecture is presented. For every quantum
operation, the iterant spins are required to be generated and
injected into the channel. There are several ways to generate
spin-polarized electrons. One of them is through the spin-
transfer and spin-orbit torque-based mechanisms [14], [15].

The article consists of eight sections including the intro-
duction. Section II presents the mathematical treatment for
the n-qubit QFT. The decomposition of the phase-controlled
gates used in quantum circuits for n-qubit QFT is elaborated
in Section III. In Section IV, decomposed quantum circuits
are reduced and then optimized. The realization of three-qubit
QFT on spin-torque-based n-qubit architecture is presented in
Section V. The performance of the three-qubit QFT in terms
of output state density matrix, magnitude/phase difference,
and fidelity comparison for the different forms of three-qubit
QFT is explained in Section VI. The Clifford + T gate set-
based implementation of the QFT is presented in Section VII.
Finally, conclusions are drawn in Section VIII.

II. MULTI-QUBIT QUANTUM FOURIER TRANSFORM

The discrete Fourier transform (DFT) finds its applications
in digital signal processing for the conversion of time-domain
signals into the frequency domain. The DFT of an n-bit input
is given as

DFT(k) =
N−1�
n=0

x(n) × e
− j2πnk

N (1)

where N is the number of samples. However, for the complex
signals, in comparison with QFT, DFT requires comparatively
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Fig. 1. N -qubit QFT.

large time for the time domain to frequency-domain conver-
sion [16]. Therefore, QFT can be utilized for the time domain
to the frequency-domain conversion. The QFT on n-qubit
states is expressed as

QFTN |k� = 1√
N

2N−1�
n=0

e
j2πnk

N |n� (2)

where |n� and |k� are the input and output states of the qubits,
respectively, and N is the number of qubits. (2) is further
decomposed as

QFTN |k� = 1

2
N
2

1�
n=0

· · · ·
1�

nN =0

e
j2πk(

�N
l=1 nl 2−l )

2N |nl ......nN � (3)

QFTN |k� = 1

2
N
2

1�
n=0

· · · ·
1�

nN =0

N⊗
l=1

e
j2πnkl2−l

2N |nl� (4)

QFTN |k� = 1

2
N
2

N⊗
l=1

⎛
⎝ 1�

nl=0

e j2πnkl2−l |nl�
⎞
⎠ (5)

QFTN |k� = 1

2
N
2

N⊗
l=1

�|0� + e j2πk2−l |1�	. (6)

Based on (6), QFT is constructed for n-qubits (Fig. 1). The
quantum circuit for QFT consists of Hadamard and controlled
phase shift gates [16].

H and R represent the Hadamard and controlled phase gate,
respectively. A SWAP gate is utilized at the end between
successive odd- and even-numbered qubits, respectively (1 and
3, 2 and 4). A four-qubit QFT for the unitary operation is
represented as

QFT4 =

⎡
⎢⎢⎢⎢⎣

1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i

⎤
⎥⎥⎥⎥⎦. (7)

Fig. 2. Controlled unitary gate.

Fig. 3. Conventional CNOT gate decomposition

III. DECOMPOSITION OF PHASE-CONTROLLED

GATE FOR MULTI-QUBIT QFT

A phase-controlled gate performs an unitary operation
U [14] that is represented as

U = A · X · B · X · C. (8)

Therefore, the decomposition of the phase-controlled gate [16]
for (8) is shown in Fig. 2.

The expressions for A, B , C , and X are given in the
following equations:

A =
⎡
⎣ e

−i
�

δ−β
4

�
0

0 e
i
�

δ−β
4

�
⎤
⎦ (9)

B =
⎡
⎣ cos(γ /4)e

i
�

β+δ
4

�
− sin(γ /4)e

−i
�

β+δ
4

�

sin(γ /4)e
i
�

β+δ
4

�
cos(γ /4)e

−i
�

β+δ
4

�
⎤
⎦ (10)

C =
�

cos(γ /4)e−i β
2 − sin(γ /4)e−i β

2

sin(γ /4)ei β
2 cos(γ /4)ei β

2

�
(11)

X =
�

0 1
1 0

�
(12)

where δ, β, and γ are the phase angles such that the unitary
operation U for the phase rotation is performed. Matrix X
represents the CNOT gate operation. Therefore, (8) is modified
to (13), as shown at the bottom of this page.

The controlled rotations in QFT are of the unitary form as

RK =
�

1 0

0 e
i2π

2K

�
. (14)

U =

⎡
⎢⎢⎢⎢⎣

sin2
�γ

4

�
eiβ + cos2

�γ

4

�
e
−i

�
β + δ

2

�
sin

�γ

4

�
cos

�γ

4

��
eiβ − e

−i
�

β+δ
2

��

sin
�γ

4

�
cos

�γ

4

��
e

i
�

β+δ
2

�
− e−iβ

�
sin2

�γ

4

�
e−iβ + cos2

�γ

4

�
e

i
�

β+δ
2

�

⎤
⎥⎥⎥⎥⎦ (13)
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Fig. 4. Conventional decomposition of three-qubit QFT.

TABLE I

NUMBER OF ELEMENTARY OPERATIONS

For the controlled rotations, (13) is required to be equivalent
to (14) which is possible when δ = −3β (for smaller values
of β).

After necessary modifications, (13) becomes

U =
�

eiβ 0
0 e−iβ

�
=

�
e−i3δ 0

0 ei3δ

�
. (15)

IV. REDUCTION/OPTIMIZATION OF QFT

The spin-torque-based architecture needs further decompo-
sition of the Hadamard, controlled phase, and CNOT into the
single-qubit rotations and two-qubit entanglements. A conven-
tional CNOT is decomposed into 11 elementary operations in
sequence [13] (Fig. 3).

The Rx , Rz , and
√

SW AP are single-qubit rotation about
the x-axis, single-qubit rotation about the z-axis, and two-
qubit entanglement, respectively. The matrix representation of
the

√
SWAP is given in (16). With the help of decomposed

CNOTs, H gates, and single-qubit rotations, conventional
decomposition of three-qubit QFT is achieved. For a ten-qubit
QFT, the number of operations required is 739 (Table I). The
elementary decomposition of the three-qubit QFT is shown
in Fig. 4

√
SWAP =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0
1

2
(1 + i)

1

2
(1 − i) 0

0
1

2
(1 − i)

1

2
(1 + i) 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦. (16)

From the spin-torque-based architecture point of view, the
number of elementary operations required to realize the

Fig. 5. (a) Initial Hadamard. (b) Final Hadamard operations for CNOT gate
reduction.

Fig. 6. Optimization technique for three-qubit QFT.

conventional decomposition of the QFT must be reduced with
the help of techniques presented in [17] and [18]. The reduc-
tion and optimization techniques are given in Figs. 5 and 6,
respectively [19].

QFT is optimized further by reducing the number of single-
qubit operations about the same axis at the interface of
two quantum gates (Fig. 6). The optimization of QFTs with
more number of qubits can be performed with the same
methodology. There is a considerable reduction in the number
of elementary operations due to optimization (Table I). The
number of elementary operations required to realize the QFT
for their conventional, reduced, and optimized forms up to ten
qubits is given in this article.

The reduction in the number of elementary operations helps
in minimizing the number of switching activities needed for
the spin generation and injection, preserves the spin-qubit
coherence, and reduces overall switching power dissipation.
For the spin-torque-based QC architecture, the number of
operations with the help of quantum gate library {Ry , Rz ,√

SW AP} is reduced. Ry is the qubit rotation about the
y-axis. The reduced/optimized decomposition of the three-
qubit QFT is shown in Fig. 7.

V. SPIN-TORQUE-BASED QC ARCHITECTURE

In this work, three-qubit QFT for the modeling of n-qubit
spin-torque-based QC architecture as shown in Fig. 8 is
considered. The architecture consists of qubits and barriers
embedded in a semiconductor channel. Each qubit has two
barriers (R-G) on either side. These barriers help to isolate or
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Fig. 7. Reduced/optimized decomposition of three-qubit QFT.

Fig. 8. Spin-torque-based n-qubit reconfigurable architecture.

allow a qubit for the operation. The qubit operation is based on
spin-torque-based interaction of the conducting electrons with
qubit. For the same, the conducting electrons are required to
be generated and injected into the channel. Therefore, a two-
transistor assembly is provided to generate and inject the spins
into the channel.

Transistors T1 and T2 are utilized to generate and inject
the spins. The tunnel barrier (TB) is used to reduce the
conductivity mismatch. The polarization of the ferromagnet
decides the spin state of the injected electrons. Barriers
B1, B2, B3, . . . ., Bn−1 are entrenched into the channel for two-
qubit entanglement operation. The distance between a qubit
and barrier is x0.

The single-qubit rotation and measurement in n-qubit archi-
tecture is as follows. The spin density matrix as expressed in
the following equation represents the spin polarization of the
injected electrons:

ρe = 1

2
[I + σx x̂ + σy ŷ + σz ẑ] (17)

where I , σx , σy , and σz are the unitary Pauli spin matrices.
The Hamiltonian for the interaction of injected electrons

with the qubit [20] as shown in Fig. 9 is represented as

H = p2

2m∗ + Jρe · S̃iδ(x) + �R f lδ(x − x0) (18)

where m∗ and p are the effective mass and momentum
operator of the electron, respectively, J is the hyperfine or
exchange interaction, x-x0 represents the interaction distance

Fig. 9. (a) Electron-qubit interaction. (b) Two-qubit entanglement.

from the reflection barrier, and S̃i is the standard basis matrix
representing the i th qubit.

The overall spin density matrix of the n-qubit system is
represented as

ρs = ρQ1 ⊗ ρQ2 ⊗ ρQ3 . . . . . . . . . . ⊗ ρQn (19)

where ρs is overall density matrix and its order is 2n × 2n .
ρQ1 , ρQ2 , ρQ3, . . . .., and ρQn are the individual spin density
matrices of Q1, Q2, Q3, . . . , and Qn , respectively.

The modified transmission coefficient matrices for singlet
and triplet are derived as follows:

t(2)
s = 1

1 + i4	l − i3	 − 12	2l(ei2kx0 − 1)
(20)

t(2)
t = 1

1 + i4	l + i	 + 4	2l(ei2kx0 − 1)
(21)

where v is the velocity of the electron, 	 = J/�v, and l =
(�R f l/J ).

With the help of (20) and (21), the qubit rotation is modeled
in [17] as

t(2) = 1

(1 + i4	l)I + i S̃i
�
	 − �

i4	2l
�
ei2kx0 − 1

			 . (22)

The overall reflection matrix R(2)
F is obtained in the following:

R(2)
F =r (2)−ei2kx0 t(2)

�
I2n+1 +ei2kx0 I2n+1 R0

�−1
I2n+1 t(2) (23)
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Fig. 10. Qubit-state evolution for the input |� for modified (second order) transmission coefficient-based reduced/optimized decomposition of the QFT.

where R0 matrix represents the reflection barrier, I is the
identity matrix for the n-qubit architecture, and r (2) = t(2)− I .

The overall fully specified density matrix is obtained as

ρ(2) = �
R(2)

F

��
ρe ⊗ ρs

��
R(2)†

F

�
(24)

where ρe is the spin density matrix of the moving electrons.
The single-qubit rotation is achieved through the iterative

process for (24). The other aspect of the modified (second
order) transmission coefficient model is the two-qubit entan-
glement. For the two-qubit entanglement, the barrier heights
of respective Bs are required to be lowered. The modified
(second order) transmission and reflection coefficient matrix-
based two-qubit entanglement through the reflection matrix
representing the interaction of moving electrons at qubits Q1
and Q2, and the injection side barrier are modeled as follows.

The reflection matrix at Q1 is

R(2)
F1

=r (2)
1 −ei2kx0 t(2)

1

�
I2n+1 +ei2kx0 I2n+1 R0

�−1
I2n+1 t(2)

1 . (25)

The reflection matrix at Q2 is

R(2)
F2

= r (2)
2 − ei2kx0 t(2)

2

�
I2n+1 + ei2kx0 I2n+1 R(2)

F1

�−1
I2n+1 t(2)

2 .

(26)

The overall reflection matrix at the injection side barrier is

R(2)
Fb

= r (2)
b − ei2kx12 t(2)

b

�
I2n+1 + ei2kx12 I2n+1 R(2)

F2

�−1
I2n+1 t(2)

b .

(27)

For the two-qubit entanglement, R(2)
Fb

is used in (24) for the
iterative process. At the end of the iterative process, the partial
trace on ρ(2) provides the states of entangled qubits.

The conventional, reduced, and optimized forms of the
QFT are realized on the spin-torque-based QFT. For the

representation purpose, the state evolution of input state |000�
is shown in Fig. 10.

VI. PERFORMANCE ANALYSIS OF THREE-QUBIT QFT

The performance of the modified (second order) trans-
mission coefficient-based three-qubit QFT is analyzed based
on the reduction in number of electrons required, deviation
in the qubit states at the output, and QFT fidelity for all
possible combinations of the input states, and its ability to
trace the periodicity. The number of electrons required for
the QFT realization depends on the number of operations
involved to perform the QFT; angle of rotation for single-
qubit operations; and two-qubit entanglement. There is a
considerable reduction in the number of electrons required
for the reduced/optimized forms of the QFT. The magni-
tude and phase difference between conventional, reduced, and
optimized forms of the QFT for the input |100� are shown
in Fig. 11. Ideally, the respective phase difference and magni-
tude difference should be zero. However, the magnitude differ-
ence and phase difference between the first-order conventional
and modified (second order) matrix-based conventional QFTs
is large in comparison with other respective magnitude and
phase differences due to 34.52% more number of operations
is required for the conventional decomposition; and the effect
of the ratio of height of the injection side barrier to the
exchange interaction on the single-qubit rotation and two-qubit
entanglement.

The expression for the fidelity given in [21] for the model
used in this article is

F = Tr(ρdρo)�
T r

�
ρ2

d

	�
T r

�
ρ2

o

	
�

Tr
�
ρ2

o

	
T r

�
ρ2

in

	 (28)
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Fig. 11. Magnitude and phase difference for the input |� between (a) first-order conventional and first-order reduced QFT, (b) first-order conventional and
modified (second order) matrix-based conventional QFT, (c) first-order reduced and modified (second order) order reduced QFT, and (d) modified (second
order) order conventional and modified (second order) order reduced QFT.

TABLE II

QFT FIDELITY FOR CONVENTIONAL AND REDUCED THREE-QUBIT QFT

where ρd , ρo, and ρin are desired or ideal output states
spin density matrix, obtained states spin density matrix, and
input states spin density matrix. The fidelity comparison for
all forms of the three-qubit QFT is given in Table II. The
first-order conventional, first-order reduced, modified (second
order) conventional, and modified (second order) reduced
three-qubit QFTs have the average fidelities of 99.97%,
99.98%, 99.74%, and 99.90%, respectively.

The most important aspect of the QFT is periodicity extrac-
tion. An input state preparation [Fig. 12(a)] is required to
extract the periodicity of the three-qubit QFT. Therefore,
the input state is prepared [Fig. 12(b)] and subsequently, QFT
is obtained for the input as shown in [Fig. 12(c)]. It is observed
that the output density matrix is periodic with a period of four
for the input of periodicity two.

VII. CLIFFORD+T GATE SET-BASED

QFT IMPLEMENTATION

The quantum computation needs a finite gate set to solve
the problem of efficient approximation. However, there is a

Fig. 12. QFT Periodicity estimation for the input state. (a) Quantum circuit.
(b) Periodicity 2 of the input state. (c) Periodicity 4 of the output state.

TABLE III

PARAMETERS USED FOR SIMULATIONS

limitation on the basic gates sets like universal Clifford+T
gate [22]. Therefore, there is need for optimized Clifford+T
gate set-based quantum circuits with minimum depth [23].
In this article, an optimal-depth quantum circuit is utilized
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Fig. 13. Clifford+T gate set-based QFT.

Fig. 14. Reduced decomposition of the Clifford+T gate-based QFT.

Fig. 15. Qubit state evolution of the Clifford+T gate set-based three-qubit QFT for “000” input.

to implement the Clifford+T gate-based three-qubit QFT
(Fig. 12). The number of elementary gates, T -depth, and
total depth of the quantum circuit is 40, 9, and 32, respec-
tively. The optimal decomposition of the Clifford+T gate-
based QFT is shown in Fig. 13. The state evolution of the
spin-qubit state is shown in Fig. 14. It is observed from
Figs. 10 and 15 that the respective input and output states are
the same. Therefore, it is possible to realize the Clifford+T

gate set-based QFT with the help of spin-torque-based single-
qubit rotation and two-qubit entanglement model. The number
of elementary operations required for the three-qubit conven-
tional QFT and reduced QFT is 84 and 55, respectively. How-
ever, the Clifford+T gate-based QFT decomposition results
in 188 elementary operations. After applying the reduction
technique, it requires 134 elementary operations to realize the
three-qubit QFT.
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VIII. CONCLUSION

In this article, QFT’s optimal decomposition is achieved
for the spin-torque-based QC architecture with the help of
modified (second order) density matrix and optimized decom-
position of the quantum circuit. Due to the optimization, there
is a reduction in the number of transistor switching activities
and the number of electrons required for the realization of
the QFT. Moreover, the spin-torque-based QFT is able to trace
the periodicity of the prepared input states of the periodicity
of 4. The important outcome of the analysis is that the
fidelity of the spin-torque-based three-qubit architecture is
more than 99%, which encourages utilizing the spin-torque-
based architecture platform for the realization of complex
computing applications of which QFT is an integral part.

APPENDIX

Key parameters are taken from [13] and are placed in
Table III.

REFERENCES

[1] C. H. Bennett, E. Bernstein, U. V. Vazirani, and G. Brassard, “Strengths
and weaknesses of quantum computing,” SIAM J. Comput., vol. 26,
no. 5, pp. 1510–1523, Oct. 1997.

[2] E. Rieffel and W. Polak, “An introduction to quantum computing
for non-physicists,” ACM Comput. Surv., vol. 32, no. 3, pp. 300–335,
Sep. 2000.

[3] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annu. Symp. Found. Comp. Sci., Santa Fe,
NM, USA, Nov. 1994, pp. 124–134.

[4] C. M. Dawson, H. L. Haselgrove, A. P. Hines, D. Mortimer,
M. A. Nielsen, and T. J. Osborne, “Quantum computing and polynomial
equations over the finite field Z2,” Quantum Inf. Comput., vol. 5, no. 2,
pp. 102–112, Mar. 2005.

[5] W. Wang, X. Jiang, L.-Z. Mu, and H. Fan, “A quantum algorithm for
greatest common divisor problem,” 2017, arXiv:1707.06430. [Online].
Available: https://arxiv.org/abs/1707.06430

[6] C. Cheng, R. Lu, A. Petzoldt, and T. Takagi, “Securing the Internet
of Things in a quantum world,” IEEE Commun. Mag., vol. 55, no. 2,
pp. 116–120, Feb. 2017.

[7] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput., vol. 26,
no. 5, pp. 1484–1509, 1997.

[8] Y. S. Weinstein, M. A. Pravia, E. M. Fortunato, S. Lloyd, and
D. G. Cory, “Implementation of the quantum Fourier transform,” Phy.
Rev. Lett., vol. 86, no. 9, pp. 1889–1891, Feb. 2001.

[9] X. Tan, S. Cheng, J. Li, and Z. Feng, “Quantum key distribution protocol
using quantum Fourier transform,” in Proc. IEEE 29th Int. Conf. Adv.
Inf. Netw. Appl. Workshops, Mar. 2015, pp. 96–101.

[10] D. N. Diep, “Multiparty quantum telecommunication using quan-
tum Fourier transforms,” 2017, arXiv:1705.02608. [Online]. Available:
https://arxiv.org/abs/1705.02608

[11] L. Ruiz-Perez and J. C. Garcia-Escartin, “Quantum arithmetic with the
quantum Fourier transform,” Quant. Inf. Process., vol. 16, no. 6, p. 152,
Jun. 2017.

[12] G. Bourianoff, “The future of nanocomputing,” Computer, vol. 36, no. 8,
pp. 44–53, Aug. 2003.

[13] B. Sutton and S. Datta, “Manipulating quantum information with spin
torque,” Sci. Rep., vol. 5, Dec. 2015, Art. no. 17912.

[14] M. Wang et al., “Field-free switching of a perpendicular magnetic tunnel
junction through the interplay of spin–orbit and spin-transfer torques,”
Nature Electron., vol. 1, no. 11, pp. 582–588, Nov. 2018.

[15] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[16] A. Kulkarni, S. Prajapati, and B. K. Kaushik, “Transmission coefficient
matrix modeling of spin-torque-based n-qubit architecture,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 8, pp. 1461–1470,
Aug. 2018.

[17] A. Kulkarni, S. Prajapati, S. Verma, and B. K. Kaushik, “Optimal
Boolean logic quantum circuit decomposition for spin-torque-based
n-qubit architecture,” IEEE Trans. Magn., vol. 54, no. 10, Oct. 2018,
Art. no. 4100109.

[18] C. C. Lin, A. Chakrabarti, and N. K. Jha, “Optimized quantum gate
library for various physical machine descriptions,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 21, no. 11, pp. 2055–2068,
Nov. 2013.

[19] G. Cordourier-Maruri, F. Ciccarello, Y. Omar, M. Zarcone, R. de Coss,
and S. Bose, “Implementing quantum gates through scattering between
a static and a flying qubit,” Phys. Rev. A, Gen. Phys., vol. 82, no. 5,
2010, Art. no. 052313.

[20] K. Dorai and D. Suter, “Efficient implementations of the quantum
Fourier transform: An experimental perspective,” Int. J. Quantum Inf.,
vol. 3, no. 2, pp. 413–424, Jun. 2005.

[21] V. Kliuchnikov, D. Maslov, and M. Mosca, “Fast and efficient exact
synthesis of single-qubit unitaries generated by clifford and T gates,”
Quantum Inf. Comput., vol. 13, nos. 7–8, pp. 607–630, Jul. 2013.

[22] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum circuits,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 32, no. 6,
pp. 818–830, Jun. 2013.

Anant Kulkarni (S’15) is currently pursuing the Ph.D. degree with the Elec-
tronics and Communication Engineering Department, IIT Roorkee, Roorkee,
India.

His research interests include spintronics-based devices, circuits, and
computing.

Brajesh Kumar Kaushik (SM’13) received the Ph.D. degree from
IIT Roorkee, Roorkee, India, in 2007.

He joined the Department of Electronics and Communication Engineering,
IIT Roorkee, as an Assistant Professor in 2009, where he has been an
Associate Professor since 2004. His current research interests include the areas
of high-speed interconnects, low-power VLSI design, memory design, carbon
nanotube-based designs, organic electronics, FinFET device circuit co-design,
electronic design automation (EDA), spintronics-based devices, circuits and
computing, image processing, and optics- and photonics-based devices.

Dr. Kaushik is a member of many expert committees constituted by
government and non-government organizations. He received many awards
and recognition from the International Biographical Center (IBC), Cambridge.
He has served as a General Chair, a Technical Chair, and a Keynote Speaker
of many reputed international and national conferences. He is an Editor of the
IEEE TRANSACTIONS ON ELECTRON DEVICES; an Associate Editor of the
IET Circuits, Devices & Systems; an Editor of the Microelectronics Journal,
Elsevier; and an Editorial Board Member of the Journal of Engineering,
Design and Technology, Emerald and Circuit World, Emerald. His name
has been listed in Marquis Who’s Who in Science and Engineering and
Marquis Who’s Who in the World. He has been conferred with Distinguished
Lecturer (DL) Award of the IEEE Electron Devices Society (EDS) to offer
EDS Chapters with quality lectures in his research domain. He also serves
as an Visiting Lecturer of the SPIE society to deliver lectures in the area
of spintronics and optics. He has 12 books to his credit published by
reputed publishers such as CRC Press, Springer, Artech, and Elsevier. One
his authored books titled “Nanoscale Devices: Physics, Modeling, and Their
Application,” CRC Press has won 2018 Outstanding Book and Digital Product
Awards in the Reference/Monograph Category from the Taylor and Francis
Group.

Authorized licensed use limited to: Nirma University Institute of Technology. Downloaded on December 04,2024 at 08:14:48 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


