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A B S T R A C T

Electroencephalogram (EEG) signals are a cost-effective and efficient method to measure and analyse neuro-
logical data and brain-related ailments. Autism Spectrum Disorder (ASD) is a globally prevalent neurological
disorder that is of significant concern to the medical research community regarding its diagnosis and treatment.
Artificial Intelligence (AI) algorithms utilized to study EEG signals of autistic patients have shown promising
results to make progress in this domain. In this study, the authors have used the BCIAUT-P300 dataset for
attention measurement and analysis of EEG signals of autistic patients. The dataset comprises the EEG signal
data of ASD patients when they are exposed to external stimuli in a controlled environment. The authors
propose a Convolutional Neural Network based Feature Extractor for BCI Attention Classification (CNN-FEBAC)
framework to achieve the research objective of predicting the response of ASD patients by studying their
EEG signal recordings. The CNN-FEBAC framework consists of a feature extractor architecture followed by a
shallow classifier to predict the patient’s response to the stimuli. The proposed model was evaluated using
performance metrics such as — confusion matrix, accuracy and F1 scores. The best accuracy achieved by the
proposed model was 91%. The authors have explored and described the limitations of previously established
methods and highlighted the performance improvements achieved with the proposed CNN-FEBAC framework.
The authors further highlight the challenges encountered in the study and suggest the scope for improvement.
1. Introduction

Electroencephalogram (EEG) is the electrical recording of the brain’s
activity, represented by voltage fluctuations due to ionic current flows
within the brain neurons. It is a non-invasive recording technique of
brain signals and is performed by attaching electrodes to the brain. The
amplitude range of EEG signals is 10 to 200 V, and the frequency range
is 0.5 to 40 Hertz (Hz). EEG signals are non-stationary and non-linear
in nature [1,2].

EEG signals find significant use in the research community in study-
ing brain functions, attention and alertness. They are also used to
diagnose various neurological ailments like epilepsy, autism, seizure
and other brain traumas [3,4]. The strength and intensity of an in-
dividual’s brain waves vary throughout the day. The EEG signals can
be divided into five frequency bands, depending upon the level of
awakening of the brain (Table 1) [5].

Autism Spectrum Disorder (ASD), or autism, is a developmental
disorder affecting the individual’s social interaction and behaviour.
It can be defined by the presence of difficulty or impairments while
dealing with social interactions and communication [6]. Here, the term
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Table 1
EEG Frequency Bands.

EEG band Frequency range Brain state

Delta 0.5 to 4 Hz Deep, restful, unconscious sleep
Theta 4 to 8 Hz Light sleep
Alpha 8 to 13 Hz Awake, rest state
Beta 13 to 30 Hz Awake and fully alerted state
Gamma Greater than 30 Hz Visual Simulation response

‘‘spectrum’’ signifies that the disorder can occur in different forms with
varying severity levels in different individuals. Each autistic individual
faces different kinds and levels of impairment, symptoms, strengths and
challenges [7,8].

The behavioural patterns of ASD individuals are analysed via neuro-
logical data. EEG signal recordings of such individuals can help analyse
their neurological functioning. An autistic patient’s EEG signals have
significantly more spiking as compared to normal individuals [9]. The
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Fig. 1. EEG signal recordings of normal v/s autistic individuals [10].

magnitude of spikes in their EEG signals is also greater in compari-
son. Different timestamps in the signal can help analyse responses to
different stimuli. Increased activity of delta, theta, beta, and gamma
bands, with reduced activity of alpha frequencies, is a frequent pattern
observed in patients with ASD [7]. Fig. 1 shows the difference in EEG
signals of normal individuals vs autistic patients. An erratic and volatile
pattern of signals is observed in autistic individuals [10].

The analysis of autism using EEG signals deals with certain concepts
such as Event-Related Potential (ERP), P-300 wave and Brain Computer
Interface (BCI). An ERP can be explained as an electro-physiological
response to a stimulus by a human brain. The P-300 wave is the ERP
component elicited by the brain during any decision-making process. It
is related to the person’s neurological response to any stimulus and not
the physical attributes of the stimulus. A BCI is a collaboration between
a brain and a device that enables the brain signals to direct certain
external activities, such as control of a cursor or a prosthetic limb.

Artificial Intelligence (AI) has been widely used to analyse and
classify EEG signals. Machine learning (ML) has consistently enhanced
results in such sectors. It is a sub-field of AI that involves the de-
velopment of algorithms and statistical models that enable computers
to learn from and make decisions without explicit programming. ML
consists of several types, such as supervised learning, unsupervised
learning, semi-supervised learning, and reinforcement learning [11,12].
Deep Learning (DL) is an AI domain that uses deep neural networks
to model and analyse complex patterns in data. It has been partic-
ularly successful in areas such as computer vision, natural language
processing and speech recognition. While DL requires large amounts
of data and computational power, their ability to automatically extract
and learn features often helps them perform better than traditional ML
algorithms. DL models can handle non-linearity in data, which is crucial
as many real-world problems have non-linear relationships between
inputs and outputs [13,14]. Subsequently, DL techniques have found
their applications in various everyday domains such as healthcare [15],
satellite image analysis [16], robotics [17] and automation [18], among
others.

This study aims to propose a DL framework to study and analyse
the changes in EEG signals of ASD individuals when they react to a
stimulus. The BCIAUT-P300 dataset from the International Federation
of Medical and Biological Engineering (IFMBE) Scientific Challenge, or-
ganized during MEDICON 2019 [19], has been used for this study. The
dataset consists of EEG signal recordings of ASD patients as a response
to certain controlled stimuli. The task is to predict whether an ASD pa-
tient successfully identified the target object or not using the EEG data.
The authors have explored the approaches from previous studies and
aim to overcome their shortcomings such as – inconsistent performance
on subjects, lack of evaluation metrics, and session-specific analysis –
by proposing their framework — Convolutional Neural Network based
Feature Extractor for BCI Attention Classification (CNN-FEBAC).
2

1.1. Motivations

1 in 160 children worldwide has ASD. Analysing ASD patients and
their behaviour can help better understand the disorder and develop
more effective treatment strategies. EEG signals are a practical and
affordable method of measuring brain activity and can be used to
analyse autism. The potential for EEG to be employed as a functional
brain imaging modality is growing. It can be analysed and explored
with the aid of cutting-edge DL and ML algorithms [7]. The authors
hope to contribute to the medical research community with the results
of this study.

1.2. Contributions

The major contributions of this paper are as follows.

• The authors propose a novel framework comprising data augmen-
tation techniques, a CNN-based Feature Extractor model to cap-
ture the general EEG signal information and a shallow classifier
model on top for patient-specific information.

• The authors compare and analyse the results of the proposed
framework with previously established methods on the same
dataset. The authors also highlight the shortcomings of the previ-
ous approaches and detail the reasons for improved performance
in the proposed framework.

• The results of the study can aid medical experts in analysing
the response and attention patterns of ASD individuals, which
can help aid and develop treatment programs. The authors also
highlight further research avenues to expand the scope of the
study.

1.3. Organization

The rest of the paper is organized as follows. Section 2 describes the
other works related to the domain and the literature study. Section 3
presents the details and description of the dataset. Section 4 describes
the framework system. The methodology and implementation are de-
scribed in Section 5. The results of the study are presented in Section 6.
Finally, the paper is concluded in Section 7, which also includes the
future scope of the study.

2. Related work

EEG signals have been employed in different domains of neurolog-
ical analysis, such as emotion recognition, epilepsy analysis, autism
analysis etc. Past research has shown that ML methods have been ap-
plied for emotion recognition and classification using EEG signals [30].
The authors in [30] have used the DEAP dataset formed after aggregat-
ing data from different tests and sampling rates. The 2D EEG channel
data was converted to a single dimension feature vector to feed into
ML algorithms like Support Vector Machine (SVM), Logistic Regression,
K-Nearest Neighbours (KNN), Decision Trees and Linear Discriminant
Analysis (LDA). They concluded the best performance of SVM with an
accuracy of 63% (see Table 2).

ML algorithms have also been applied in studies for detecting autism
using EEG signal data. Liao et al. in [20] describe a study which
employs behavioural data such as eye fixation, facial expressions and
physiological data like EEG signals to detect autism in individuals. The
authors have used ML techniques like Random Forest, SVM and KNN for
autism detection. Random Forest outperformed other algorithms with
a classification accuracy of 83.75%.

DL approaches have also been employed for autism detection using
EEG signals. In study [21], the 2D channel EEG data was passed to the
CNN model for classification and the model’s performance was eval-
uated using a confusion matrix and accuracies. The authors achieved
an accuracy of 80%. Radhakrishnan et al. [22] present a comparative
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Table 2
Comparison of literature.

Study Data Approach Best accuracy Other evaluation metrics Limitations

Detect children with ASD
using physiological and
behavioural data by applying
ML techniques [20]

Custom
dataset

Random Forest,
SVM, KNN

83.75% Confusion Matrix Data recorded in varying
environments, limited samples

Detect autism by identifying
patterns in EEG signals
between autistic and normal
individuals using DL [21]

Dataset from
University
King Abdul
Aziz

CNN architecture 80% Confusion Matrix Limited size of dataset
resulting in low accuracies
and inconsistent outputs

Analyse performance of
various deep CNN
architectures to detect autism
[22]

Custom
dataset

AlexNet,
ResNet50,
Resnet101

81% Precision, Recall, F1 score Heavy overfitting of models
due to deep architectures,
limited number of samples in
the dataset

Detect autistic individuals by
applying deep convolution
neural network based
architectures on EEG signal
data [23]

Dataset from
University
King Abdul
Aziz

ResNet101,
ResNet50,
ResNet18

98.32% Precision, F1 score, Recall Limited dataset of 29
individuals, computationally
intensive processing

ASD detection in individuals
using EEG signal data and
different ML based
classification algorithms [24]

Custom
Dataset

Probabilistic
Neural Network,
SVM-RBF, KNN

98.7% Sensitivity, Specificity,
Positive Predictive Value

Proposed model only works
with smaller data size, feature
selection is done manually

Attention Measurement in
13-year old ASD individual
using EEG signals [25]

Custom
Dataset

SVM, MLP-NN,
Random forest

92.99% Confusion Matrix,
Precision, Recall, F1 score,
Area Under Curve, Cohen’s
Kappa Coefficient,
Hamming Loss, Matthews
Correlation Coefficient

Absence of BCI and individual
EEG information which can
enhance performance and the
quality of the data

Attention Measurement of
ASD patients using EEG
signals based on response to
external stimuli [26]

BCIAUT
P-300 Dataset

EEGNet
architecture

92.47% Not Mentioned Hyperparameters of the base
model have not been tuned,
performance on other
evaluation metrics not
provided

Attention Measurement of
ASD patients using EEG
signals based on response to
external stimuli [27]

BCIAUT
P-300 Dataset

BLSTM-CNN
architecture

84% Not Mentioned Hyperparameters have not
been tuned to check if there is
a performance increase,
limited number of samples in
the dataset

Attention Measurement of
ASD patients using EEG
signals based on response to
external stimuli [28]

BCIAUT
P-300 Dataset

VB-ARD model 81.4% Computation time Accuracy variance is very
high, performance on other
evaluation metrics of
classification is not provided

Attention Measurement of
ASD patients using EEG
signals based on response to
external stimuli [29]

BCIAUT
P-300 Dataset

LDA,
LDA+Boosting,
LSVM, RSVM

80% F1 score Limited number of samples in
the dataset, Inconsistent and
insufficient accuracies across
different individuals
study of different DL-based convolutional architectures applied to EEG
signals to perform feature extraction and classification for autism de-
tection. The authors applied architectures such as AlexNet, Inception
v1, ResNet50, Resnet101, SqueezeNet etc. The architecture of ResNet50
outperformed other algorithms with an average accuracy of 81%.

Another domain wherein artificial intelligence is applied to EEG
signals is attention measurement and analysis of ASD patients [25]. In
this study, the authors have explored the use of different algorithms
like Naïve Bayes, KNN, Decision Trees, SVM, Multi-layer Perceptron —
Neural Networks (MLP-NN), Random forest etc., for attention measure-
ment and analysis of autistic individuals. The authors concluded the
best performances of MLP-NN, Random Forest and SVM-RBF algorithms
with accuracies of 92.99%, 92.94% and 89.33%, respectively.

Cecotti et al. [31] were the first to establish the implementation of
neural networks while dealing with P300 waves, which have also been
used in our study. The study detected P300 waves using a CNN model
with an accuracy of 95.5%. This study concludes the application of DL
and CNN-based approaches while dealing with P300-based signal data.

The winners of the IFMBE challenge 2019 employed a CNN ap-
proach for the research objective of attention span and analysis of
autistic patients when they are asked to identify target objects from
3

a series of flashed objects [26]. The authors implemented the EEGNet
Model with a few modifications. The model was trained within the set
in which each patient session was treated separately and all sessions
of one patient were trained together for the cross-set. The within-set
accuracy achieved 84.43% and the cross-set accuracy was 92.47%.

Other approaches in the IFMBE 2019 competition included the
Bidirectional Long Short Term Memory (BLSTM)-CNN approach [27]
and Linear v/s Non-linear classification approach [29]. In another
study [27], the authors developed a model with one CNN layer fol-
lowed by 2 BLSTM layers and achieved an accuracy of 84%. Arancibia
et al. [29] utilized linear approaches such as LDA and SVM and non-
linear approaches like Reduced Support Vector Machines (RSVM) for
session-specific classification. The study showed that linear algorithms
did not work for complex cases, and they were more generalized. It
also proved that the non-linear approaches did not perform signifi-
cantly better than the linear approaches. The overall data prediction
accuracy achieved was 82%. The authors in the study concluded that
subject-specific classification outperformed inter-subject classification.

Based on the comprehensive literature study, the authors have
identified and summarized certain research gaps. Several studies in
autism analysis using EEG signals incorporate machine learning ap-
proaches and require prior knowledge of the domain for manual feature

selection. This process varies for different datasets and requires expert
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knowledge and human intervention. This study addresses the limita-
tion above by utilizing DL techniques that facilitate automatic feature
selection.

Furthermore, the EEG signal recordings in this application are col-
lected from multiple nodes simultaneously, forming multi-channel data.
These channels must be processed together to retain maximum sig-
nal information. This study uses CNN architectures that capture spa-
tial information using convolutional layers that learn filters to ex-
tract features from different signal parts. These filters are applied
across all channels simultaneously to recognize local patterns and struc-
tures effectively. Hence CNNs are highly efficient at retaining spatial
information [31,32] as well as extracting the underlying features [15].

Attention analysis of an ASD patient is generally conducted over
several sessions with similar stimuli. The patient’s response differs
slightly in each session, resulting in minor variances in the signal
recordings. Current studies perform a session-specific evaluation that
does not incorporate such variations. The authors aim to address this
limitation by combining the data from each subject’s sessions to train
the proposed architecture.

3. Dataset

The BCIAUT-P300 dataset was used in the International Federation
of Medical and Biological Engineering (IFMBE) Scientific Challenge,
organized during MEDICON 2019. It comprises the complete EEG signal
recordings of a conducted clinical trial to test a P300-based Brain–
Computer Interface to train ASD patients in joint social attention and
following social cues.

It contains the EEG data of 15 ASD patients who underwent seven
training sessions over four months. Hence a total of 105 sessions were
conducted. Data acquisition was made using the g. The Nautilus system
is a device measuring EEG data and needs to be worn on the head.
The device recorded data from 8 electrodes at C3, CZ, C4, CPZ, P3,
PZ, P4, and POZ locations. The participant’s outcomes were assessed
at baseline, i.e., session 0; post the training, i.e., session seven and the
follow-up (6 months after training).

The P300-based virtual reality BCI paradigm was presented to par-
ticipants in a virtual environment using a Virtual Reality headset and
EEG cap. The 8 electrodes mentioned above recorded the EEG data.
The virtual environment was in the form of a normal bedroom having
certain objects of interest. 8 objects in the environment were flashed
in front of the participant in random order. These 8 objects were —
a wooden plane hanging from the ceiling, a printer on a shelf, a cork
board on the wall, a laptop on a table, a ball on the ground, a radio on
top of a dresser, a picture on the wall and books on a shelf.

The task was divided into 3 phases. The first two phases were a part
of the BCI calibration and the last phase was the online phase. In Phase
1, Participants were directly and explicitly instructed to attend to the
target object to remove potential errors in identifying the same. Phase 2
involved asking the participants which object was flashed to guarantee
they learned to read the attention cue accurately and correctly use this
information. In Phase 3, the participants were asked to respond to the
head cue of an avatar in the centre of the scene, looking at the object
of interest.

Each trial had 10 sequential runs; each run consisted of the flashing
of all 8 objects in random order. Flash of each object was done with
an inter-stimulus interval of 200 ms and each flash had a duration of
100 ms. This gave a total of 80 flashes per trial. Participants performed
a total of 70 trials (10 in the first phase, 10 in the second, and 50 in the
online phase). Fig. 2 shows the pictorial representation of blocks, runs
and events in the experimental setup. Fig. 2 (A) shows a block used to
identify a target object. Each block consisted of K runs. Fig. 2 (B) shows
a run. Each run consisted of 8 events, each event corresponding to the
flashing of one of the 8 objects in the setup. Fig. 2 (C) shows an event
which comprised of flashing of the corresponding object for 100 ms,
with an interval of 200 ms between 2 flashes.
4

Fig. 2. Description of experiment environment with blocks runs and events [19].

The first 20 calibration trials stored the P300 responses that oc-
curred when the object of interest flashed. This was part of the training
set. Statistical classifiers were used to identify this response. These
classifiers were then used in the online phase to determine whether
participants were counting the flashes of the avatar’s object of interest.
If it was correctly done by the participant, the BCI gave positive
feedback, i.e., the object of interest turned green at the end of the trial.
If not, the object turned red.

The train folder consisted of the following files-

• train data.mat — Calibration phase data, structured as [channels
𝑥 epoch 𝑥 event], epoch corresponding to data samples from 200–
1000 ms, relative to the event stimulus onset (epoch length of
1200 ms; 350 data samples). Final shape = (8, 1600, 350)

• trainEvents.txt — One label per line (from 1 to 8) corresponding
to the order of the flashed objects.

• trainTargets.txt — 1 or 0 per line, indicating if the flashed object
was the target object or not, respectively.

• trainLabels.txt — Label of the target object per line (from 1 to 8),
one for each block.

The test folder consisted of the following files-

• testData.mat — Data from the online phase in the same structure
as the train data.

• testEvents.txt — One label per line (from 1 to 8) corresponding
to the order of the flashed objects.

• testTargets.txt — 1 or 0 per line, indicating whether the flashed
object was the target, respectively.

• testLabels.txt — Label of the target object per line (from 1 to 8),
one for each block.

• runs_per_block.txt — File containing only one number, corre-
sponding to the number of runs per block used in the online phase
(from 3 to 10).

The epochs were calculated as (events per run*runs per
block*blocks). For training data, there were 8 events per run, 10 runs
per block and 20 blocks which summed up to 1600 epochs. In the
testing data, the number of runs varied between sessions; there were
50 blocks and 8 events in each run. The epochs summed up to 400 K,
where K was the variable number of runs between sessions.

4. Framework system model

Fig. 3 visually represents the proposed CNN-FEBAC system. It show-
cases a step-by-step process of using the BCIAUT-P300 dataset to pre-

dict an ASD individual’s response to external stimuli.



Biomedical Signal Processing and Control 88 (2024) 105018M. Patel et al.
Fig. 3. System model and description of the CNN-FEBAC Framework.

The study is conducted on the data of 15 subjects (𝑛 ∈ {1, 2,…15}).
The training dataset (𝐷) is severely imbalanced with samples of class 0
(𝐷0) and samples of class 1 (𝐷1) in the ratio of 7:1. Hence, the data is
pre-processed and transformed to correct the target class imbalance.
To overcome this, data augmentation techniques are used to obtain
samples of both classes in the ratio of 1:1. Subsequently, augmentation,
batching and shuffling techniques are carried out and the processed
data (𝐼) is returned. The pre-processing and augmentation process is
described in detail in Section 5.1. Next, the Feature Extractor (𝐹𝐸)
is trained on all subjects iteratively to capture the intrinsic features
of the EEG signal data from all subjects. Steps 2 to 5 of Algorithm
1 showcase the pre-processing and feature extraction training. After
the 𝐹𝐸 training is completed, the trainable attribute of the feature
extractor is changed to False to stop further training. Following this,
a Shallow Classifier (𝑆𝐶) is joined on top of the feature extractor. The
final model (𝑀) consists of both combined models. The final model
is then trained on each subject individually to gain subject-specific
information. Steps 6 to 9 of Algorithm 1 describe the final model
compilation process.
Algorithm 1 Training process.
Inputs: Subjects (𝑛), Training Data (𝐷), Actual Label (𝐿), Feature Extractor
(𝐹𝐸), Shallow Classifier (𝑆𝐶), Final Model (𝑀)
Output: Obtain trained model 𝑀
Preparation: Number of epochs = z
1: procedure Model(𝑛,𝐷,𝐿, 𝐹𝐸, 𝑆𝐶,𝑀)
2: for each 𝑛 ∈ {1, 2,…15} do
3: 𝐼𝑛 = pre-processing(𝐷𝑛, 𝐿𝑛)
4: train FE (𝐼𝑛, z)
5: end for
6: FE.trainable = False
7: 𝑀 ← join(FE, SC)
8: train 𝑀(𝐼𝑛, z)
9: return 𝑀

10: end procedure

After the complete training of model (𝑀) is completed, it is used
to make predictions on the test data (𝑇 ). The model predicts the
probabilities of either class (𝑃 ). The argmax function obtains the final
predictions (𝐻). This process is depicted in steps 3 and 4 of Algorithm 2.
The final predictions are then used with the actual labels (𝐿) to evaluate
the accuracy and F1 score. The final results (𝑅) are combined for
analysis. The evaluation process is depicted in steps 5 to 8 of Algorithm
2.

The results table R includes subject-wise evaluation metrics (ac-
curacy and F1 score of both classes) for the final model M and is
summarized in Table 6 in Section 6.
5

Algorithm 2 Prediction and Evaluation.
Inputs: Subjects (𝑛), Testing Data (𝑇 ), Predicted Class Probabilities (𝑃 ),
Predicted Labels (𝐻), Actual Labels (𝐿), Results Table (𝑅)
Output: Obtain predicted labels 𝐻 and performance metrics table 𝑅 for all
subjects
1: procedure Evaluate(𝑛, 𝑇 , 𝑃 ,𝐻,𝐿,𝑅)
2: for each 𝑛 ∈ {1, 2,…15} do
3: 𝑃𝑛 = predict 𝑀 (𝑇𝑛)
4: 𝐻𝑛 → argmax(𝑃𝑛)
5: 𝑅𝐴 = evaluate_accuracy(𝐻𝑛, 𝐿𝑛)
6: plot_classification_matrix(𝐻𝑛, 𝐿𝑛)
7: 𝑅𝐹 = evaluate_F1score(𝐻𝑛, 𝐿𝑛)
8: 𝑅 ← join (𝑅𝐴, 𝑅𝐹 )
9: end for

10: return R
11: end procedure

5. Methodology

This section presents the details of the proposed CNN-FEBAC frame-
work, including the dataset pre-processing, the EEGNet base model
architecture, the framework parameters and the training processes.

5.1. Dataset pre-processing

The data of each patient has been recorded over multiple sessions.
The session-specific data has a limited sample size. Hence, the data
of all the sessions of one subject have been merged and used as one
training set. In addition, this dataset is highly imbalanced where the
class targets are distributed in the ratio 7:1 for 0 and 1, respectively
(Eq. (1)). This causes significant overfitting and can result in negative
outcomes and negatively affect architecture performance. Data aug-
mentation techniques can address this problem by increasing the size
of the undersampled class.

𝐷0 ∶ 𝐷1 = 7 ∶ 1 (1)

Oversampling or undersampling techniques can either increase the
undersampled class or decrease the oversampled class, respectively.
However, due to such a significant imbalance, undersampling the larger
class would result in a loss of information. Hence, the smaller class
was oversampled. The samples were duplicated without any changes
to increase the samples and bring the sample distribution ratio of the
classes to 1:1 (Eq. (2), (3)).

𝐷1
𝑎𝑢𝑔

Duplication
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← 𝐷1 (2)

𝐷0 ∶ 𝐷1
𝑎𝑢𝑔 = 1 ∶ 1 (3)

Since the duplicates were essentially the same samples, the model
was prone to overfitting. Hence it was trained in batches of 64 con-
sisting of equal samples of both classes — 32 of each. Samples of
both classes were separated, and shuffled individually, and 32 random
samples were drawn from each class to form a batch of 64. The
following equations depict the aforementioned batching process, where
𝐷𝐵 represents the dataset obtained after batching:

𝐷0
𝐵

random sampling
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← 𝐷0, Size(𝐷0

𝐵) = 32 (4)

𝐷1
𝐵

random sampling
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← 𝐷1

𝑎𝑢𝑔 , Size(𝐷1
𝐵) = 32 (5)

𝐷𝐵 = 𝐷0
𝐵 +𝐷1

𝐵 , Size(𝐷𝐵) = 64 (6)

Algorithm 3 represents the entire flow of the pre-processing and
augmentation process.
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Fig. 4. EEGNet architecture.
Algorithm 3 Data Pre-processing and Augmentation.
Inputs: Training Data (𝐷), Actual Label (𝐿), Batch (𝐵)
Output: Obtain final training inputs I
1: procedure MODEL(D, L, S, B, I)
2: 𝐷 → (𝐷0, 𝐿0), (𝐷1, 𝐿1)
3: while Size(𝐷1) ≤ Size(𝐷0) do
4: 𝐷1

dup = duplicate(𝐷1)
5: append(𝐷1

aug, 𝐷1
dup)

6: end while
7: while Size(𝐷0) > 0 ς Size(𝐷1

aug) > 0 do
8: 𝐷0

𝐵 ← random sampling(𝐷0), Size(𝐷0
𝐵) = 32

9: 𝐷1
𝐵 ← random sampling(𝐷1

aug), Size(𝐷1
𝐵) = 32

10: 𝐷𝐵 ← concatenate(𝐷0
𝐵 , 𝐷1

𝐵)
11: shuffle(𝐷𝐵)
12: append(𝐼 , 𝐷𝐵)
13: end while
14: return(𝐼)
15: end procedure

5.2. EEGNet

After data augmentation and batching, the EEGNet model – a
pre-established compact convolutional neural network for EEG-based
brain–computer interfaces – was reconstructed and trained on the
batched dataset. The model was compiled using Adam optimizer [33]
and Sparse Categorical Crossentropy loss function. The model was
trained for 100 epochs. The EEGNet architecture is depicted in Fig. 4.

At the cost of slight accuracy reductions, the f1 score was success-
fully increased through the EEGNet architecture. However, the EEGNet
model is designed as a general-purpose architecture for EEG signals.
Certain modifications were required in the model that would capture
the specific features of the dataset on hand. These modifications are
described in the section below. EEGNet utilized kernels of size (1,64).
The researchers of EEGNet provided an explanation to keep the kernel
size equal to the batch size as per the dataset. However, this results in
a loss of information on the dataset used in this study. Autistic patients
tend to have rapid frequency changes and it is essential to capture this
information. Hence, the kernel size is changed to (1,8).

EEGNet used filters equal to the channel depth of the dataset.
However, the maximum available information cannot be captured by
this structure. Hence, the number of filters is expanded to 32 to capture
more information from all channels. The ’depth_multiplier’ parameter
in the depthwise convolutional layer replicates the existing channels by
the factor provided. However, since the data is directly duplicated and
no new information is generated, this leads to overfitting. Hence, the
multiplier is changed to 1 to reduce overfitting.

It was observed from visual plotting of the signal data that there
were significantly higher spikes in the signals when the patient ob-
served the target object. This information was lost in the average-
pooling layers as the neighbouring values would reduce the peak value.
Hence max-pooling layers are used in place of average-pooling. A 64-
unit dense layer is added after the flattening layer to minimize the rapid
collapse of neurons from 1344 units to 2 units.
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Table 3
Custom modifications of CNN-FEBAC.

Layer parameter EEGNet CNN-FEBAC

Conv (number of filters) 8 32
Conv (kernel size) (1,64) (1,8)
DC (depth multiplier) 2 1
SC (number of filters) 16 64
Pooling Average pooling Max pooling

5.3. CNN-FEBAC

To address the overfitting issue, the CNN architecture of the cus-
tomized EEGNet model is developed to be used as a Feature Extractor.
The model is trained iteratively on the data of all the subjects to
generalize the learning patterns and signal features. After training,
the Feature Extractor weight updates are frozen. The dense layers
are discarded and a shallow classifier is added on top of it. The
classifier is subject-specific and the whole model is then trained on
single subjects only. The CNN architecture captures generalized signal
data and drastically reduces overfitting while maintaining and even im-
proving the accuracy. Three dense layers in the classifier help capture
subject-specific information which differs across individuals. A softmax
activation provides the final probabilistic output of both classes. The
class with the maximum probability is chosen as the predicted label.
The architecture of the Feature Extractor and classifier model is shown
in Fig. 5.

Adam optimizer and Sparse Categorical Cross entropy loss func-
tions are used to compile both the Feature Extractor and the shallow
classifier model. Both models are trained for 100 epochs. ‘Early Stop-
ping’ [34] and ‘Reduction of Learning Rate on Plataeu’ [35] techniques
are utilized. ‘Early Stopping’ utilizes the validation loss metric and stops
training the model when there is no significant change in the validation
loss over a specified number of training epochs. This technique is
beneficial to reduce the overfitting of the model. ‘Reduction of Learning
Rate on Plateau’ reduces the learning rate by a specified factor when
there is no reduction in the training loss over the course of a specified
number of training epochs. This technique reduces redundant training
rounds and helps the model reach an optimized state faster. The data
augmentation techniques, the Feature Extractor model and the shallow
classifier, are combined to form the entire CNN-FEBAC framework.

Table 3 depicts the layer-wise parameter changes between EEGNet
and CNN-FEBAC architectures.

6. Results and analysis

This section details the results obtained by the proposed architec-
ture, its performance on the classification task and the performance
comparison with the results of other studies.

6.1. Experimental setup

The experimental setup utilized several computer libraries. The
NumPy library, version 1.22.4, is used for mathematical calculations
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Fig. 5. Proposed feature extractor and shallow classifier architecture in CNN-FEBAC framework.
Table 4
Simulation parameters of the proposed architecture.

Parameter Value

Environment Parameters
NumPy environment seed 0
Tensorflow environment seed 0
Feature Extraction & Classifier Model Parameters
Number of Training Epochs 100
Validation Data split for each Training Epoch 20%
Number of Workers 8
Optimizer Adam
Early Stopping Metric Validation Loss
Early Stopping Patience 5 epochs

and matrix operations. The Scikit-learn library, version 1.2.2, is used
for several pre-processing and metrics evaluation processes. The pre-
processing and model_selection packages from Scikit-learn are used for
scaling, encoding, and data splitting processes. The metrics package
from Scikit-learn is used for evaluating the proposed architecture,
which includes accuracy, precision, recall, and F1 score. The SciPy
library 1.10.1 visualizes the signal data from .mat files. The Tensorflow
library, version 2.11.0, and Keras library, version 2.11.0, are used to
develop the deep learning architectures, including the compilation,
training, and testing processes. The Keras ‘Model’ application program-
ming interface (API) is used to build the entire neural network models,
including all layers, individual activation functions, and regularizers,
compile the models, and simulate their training and testing.

The Matplotlib library, version 3.5.3, Seaborn library 0.11.2, and
Plotly library, version 5.5.0, are used to construct and visualize all the
plots and graphs for the simulation results. The proposed architecture
requires several hyperparameters to enhance its performance. All hy-
perparameters involved in the simulation have been listed in Table 4
along with their respective values.

The simulation environments and processes are created and run
on a system with specifications, such as a 2.50 GHz Intel Core i5
processor, 8 GB installed RAM, and NVIDIA GeForce GTX 1650 Ti
graphics processor with 4 GB RAM.

6.2. Evaluation metrics

The models were evaluated using the following performance met-
rics [36]:

• Confusion Matrix — It depicts the prediction results of a classifi-
cation problem. It showcases the true positive, false positive, false
negative and true negative values (Table 5).
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Table 5
Confusion matrix structure.

Confusion Actual true value Actual false value

Predicted True Value True Positive (TP) False Positive (FP)
Predicted False Value False Negative (FN) True Negative (TN)

• Accuracy — It is the ratio of total correct predictions to total
predictions (Eq. (7)).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(7)

• F1 Score — It is the harmonic mean of precision and recall
(Eq. (8), (9), (10)).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(8)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(9)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(10)

6.3. EEGNet vs CNN-FEBAC

The EEGNet architecture provides an average accuracy of 69.32%,
and average F1 scores for class 0 and 1 of 66.45% and 73.16%,
respectively. The EEGNet provides a good baseline for the classification
task. However, it fails to capture dataset-specific information as it is a
generalized model. Hence, a custom and dataset-specific model must
be developed to increase the performance.

The CNN-FEBAC model provides an average accuracy of 87.93%,
and average F1 scores for class 0 and 1 of 86.73% and 89.13%,
respectively. The feature-extraction architecture addresses the dataset-
specific features. Training the architecture on the data of all subjects
helps generalize the model and a subject-specific shallow classifier
fine-tunes the weights.

Fig. 6 depicts the confusion matrices for best-case results of the
EEGNet model and the CNN-FEBAC model.

It can be observed that while the EEGNet model is able to achieve
high true positives, it lacks in minimizing the false negatives and false
positives efficiently. The proposed model successfully minimizes the
false negatives to a greater extent. Furthermore, it also reduces false
positives, indicating better performance in resolving the overfitting
issue.

Table 6 compares and contrasts other different performance metrics
for both models.
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Table 6
Performance metrics for custom EEGNet and CNN-FEBAC model.

Approach Case Accuracy (%) F1 Score Class 0 (%) F1 score class 1 (%) Subject No.

Custom EEGNet model

Best 71 65 75 10
Second Best 70 66 74 9
Average 69.32 66.45 73.16 NA
Second Worst 68 67 69 4
Worst 68 67 79 13

CNN-FEBAC model

Best 91 91 92 9
Second Best 90 90 91 10
Average 87.83 86.73 89.13 NA
Second Worst 84 83 85 13
Worst 82 80 83 4
Table 7
CNN-FEBAC model performance metrics for 15 subjects.

Subject No. Accuracy (%) F1 Score Class 0 (%) F1 Score Class 1 (%)

1 88 87 90
2 89 87 90
3 88 87 89
4 82 80 83
5 88 87 90
6 89 87 90
7 89 88 90
8 85 83 87
9 91 91 92
10 90 90 91
11 89 88 90
12 89 88 89
13 83 83 85
14 89 87 90
15 88 88 89

Fig. 6. Confusion matrices for best case result of EEGNet model and CNN-FEBAC
model.

Although the generalized parametric values of the EEGNet model
can be applicable to a large spectrum of EEG signals data, the specific
case in hand does not adhere to this generalization. The custom modifi-
cations made to the CNN-FEBAC address the specific changes required
to analyse the data in this study and is hence, able to outperform
EEGNet.

6.4. CNN-FEBAC performance analysis

Instead of training a single model individually on different subjects,
a feature-extraction model trained on all the subjects helps capture
data and salient features of all subjects while focusing on the dataset.
Training a shallow classifier to be subject-specific helps capture minute
individual variations and build on the generalized information. As a
result, the CNN-FEBAC framework performs consistently on all the
subjects by successfully capturing generic EEG patterns and individual
variations. This also results in a significant performance boost of 15%–
20% across all metrics compared to the former approach. Table 7
depicts the performance metrics of subject-specific classification for 15
subjects for the proposed CNN-FEBAC model.

Fig. 7 depicts the training accuracy of the proposed model for
successive epochs and Fig. 8 illustrates the training loss of the proposed
model for successive epochs until training is stopped by the Early
8

Fig. 7. Change in accuracy over each training epoch of CNN-FEBAC model.

Fig. 8. Change in loss over each training epoch of CNN-FEBAC model.

Stopping method. It can be observed that a continuous and sharp
decrease in training loss accompanies a continuous and sharp increase
in the training accuracy. This signifies that the model is successful in
continuously improving its learning process.

As shown in Table 8, other architectures and algorithms deliver
average accuracies close to the baseline of 80%. However, they do
not provide consistent performances and there is a sharp drop in the
accuracy for a few specific subjects. E. Santamaria-Vazquez et al. [27]
implemented a CNN-BLSTM approach and obtained an accuracy of 56%
for subject 1. H. Zhao et al. [38] implemented SVM, LDA and CNN
approaches and obtained an accuracy of 51% for subject 1. However,
the author’s proposed feature extraction model and shallow classifier
deliver an accuracy of 88% for the same subject. Comparing the metrics
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Fig. 9. Accuracy comparison : I. CNN-FEBAC (proposed) and II. LDA+SVM [37].
Table 8
Comparative performance metrics of the proposed model with other established methods on the same dataset.

Model Pre-processing Average
accuracy
(%)

F1 score(%)

CNN-LSTM [27] NA 82 Not Mentioned

LDA+Boosting [29] Signal averaging and
downsampling

79 73

CNN-BLSTM [27] NA 84 Not Mentioned

RSVM [29] Signal averaging and
downsampling

79 76

VB-ARD [28] Signal time stamp
modification

81.4 Not Mentioned

LDA [29] Signal averaging and
downsampling

80 76

Proposed
CNN-FEBAC
Framework

Duplication and batching 87.93 88
of other subjects, the standard deviations of accuracies are high at an
average of 8.6%. The Feature Extractor model has a standard deviation
of 2.2% hence, providing improved and more consistent performances.

Fig. 9 depicts a subject-wise accuracy comparison of CNN-FEBAC
with the approach used by Zhao et al. [37]. They utilized a combi-
nation of a 20 Hz Butterworth low-pass filter, a linear support vector
regression pre-selector and Linear Discriminant Analysis (LDA). CNN-
FEBAC outperforms the above-stated methods in the accuracy of all the
subjects.

7. Conclusion and future scope

Attention measurement of autistic patients using EEG signals is a
significant research domain in healthcare. ML and DL models out-
perform conventional methods due to their capacity to work on and
capture more information from large and multi-channel datasets. The
authors have used the BCIAUT-P300 dataset for the objective of at-
tention measurement and analysis of autistic individuals. The dataset
contains EEG signals of autistic patients when they react to an ex-
ternal stimulus of identifying a target object from a series of flashed
objects. The dataset is highly imbalanced and data augmentation using
conventional methods was challenging due to the time-series nature
of EEG signal data. Hence, data duplication was used to balance the
classes in a 1:1 ratio. An EEGNet architecture was implemented to
form a baseline model, which gave the best accuracy of 71%. However,
EEGNet is a generalized model which does not capture dataset-specific
information. The authors propose the CNN-FEBAC model comprising a
CNN Feature Extractor to address the dataset-specific information and a
shallow classifier added on top of it to fine-tune and capture individual
variations in the signal. This model achieved the best accuracy of 91%.
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The proposed framework has certain limitations. The dataset has
a limited sample size, due to which the class imbalance issue hinders
the performance of the model. Publicly available datasets need more
data to train a generic model that can effectively capture the variations
associated with EEG signals. Such models can help expand the scope of
the study, which is currently limited to subject-specific classification.
Thus, larger datasets can be used to overcome this problem. Addi-
tionally, deeper neural network architectures can help increase the
accuracy of the outcome on such datasets. Certain research gaps need
to be addressed to make further progress in this domain. Introducing
well-balanced datasets can help prediction models train effectively on
each class and improve model performance. Further studies can also be
conducted to enhance signal data augmentation techniques to expand
small datasets in order to deal with class imbalance. Furthermore, the
analysis of EEG signals can be combined with the analysis of other
techniques, such as eye fixation, to provide more insights and improve
end results.
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