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A B S T R A C T

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that presents challenges in communication,
social interaction, repetitive behaviour, and limited interests. Detecting ASD at an early stage is crucial for
timely interventions and an improved quality of life. In recent times, Artificial Intelligence (AI) has been
increasingly used in ASD research. The rise in ASD diagnoses is due to the growing number of ASD cases
and the recognition of the importance of early detection, which leads to better symptom management. This
study explores the potential of AI in identifying early indicators of autism, aligning with the United Nations
Sustainable Development Goals (SDGs) of Good Health and Well-being (Goal 3) and Peace, Justice, and Strong
Institutions (Goal 16). The paper aims to provide a comprehensive overview of the current state-of-the-art AI-
based autism classification by reviewing recent publications from the last decade. It covers various modalities
such as Eye gaze, Facial Expression, Motor skill, MRI/fMRI, and EEG, and multi-modal approaches primarily
grouped into behavioural and biological markers. The paper presents a timeline spanning from the history
of ASD to recent developments in the field of AI. Additionally, the paper provides a category-wise detailed
analysis of the AI-based application in ASD with a diagrammatic summarization to convey a holistic summary
of different modalities. It also reports on the successes and challenges of applying AI for ASD detection while
providing publicly available datasets. The paper paves the way for future scope and directions, providing a
complete and systematic overview for researchers in the field of ASD.
1. Introduction

Autism is a developmental condition that affects communication,
social interaction, and behaviour and can be observed within the first
three years of life [1]. It is a spectrum disorder that affects indi-
viduals differently and currently has no cure. However, interventions
and therapies such as Applied behaviour Analysis (ABA), speech and
language therapy, occupational therapy, and social skills training can
help improve its symptoms [2]. Autism is linked to various SDGs. Goals
include reducing premature mortality caused by non-communicable
diseases, equal access to education, inclusive employment, social and
economic inclusion, accessible spaces, representation, and collabora-
tion to address their specific needs [3]. Effective treatments are tailored
to the individual’s needs. New approaches to learning, such as rep-
resentation learning, are being utilized to gain insights from data
and improve treatment options [4]. When detecting developmental
abnormalities like ASD, observing a child’s natural behaviour and
communication is essential. Different types of data can be collected and
analyse for ASD research, such as behavioural, neuroimaging, genetic,
and environmental data. These data sources can provide information on
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social interactions, communication skills, brain abnormalities, genetic
mutations, and environmental factors that may contribute to ASD
development [5].

The integration of AI in autism research and treatment has rev-
olutionized the field, offering substantial advancements in diagnosis,
assessment, and interventions for individuals with ASD. AI encom-
passes a spectrum of technologies, enabling machines to perform tasks
traditionally requiring human-like intelligence, including pattern recog-
nition, language comprehension, and decision-making [6]. Machine
Learning (ML), a fundamental component of AI, leverages sophisticated
algorithms to glean valuable insights from extensive datasets, aiding
in early detection, diagnosis, and treatment of autism by identifying
intricate patterns and correlations. Common ML techniques encompass
supervised learning, which trains models on labelled data for predictive
modelling. Unsupervised learning, uncovering hidden structures within
data. Semi-supervised learning, useful with limited labelled data and
reinforcement learning, applies to adaptive interventions. Noteworthy
ML algorithms in autism research include Support Vector Machine
(SVM) for classification tasks, K-Nearest Neighbours (KNN) for pattern
vailable online 7 December 2023
010-4825/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.compbiomed.2023.107801
Received 26 August 2023; Received in revised form 9 November 2023; Accepted 2
9 November 2023

https://www.elsevier.com/locate/compbiomed
http://www.elsevier.com/locate/compbiomed
mailto:21ftphde57@nirmauni.ac.in
mailto:swati.jain@nirmauni.ac.in
mailto:jaiprakash.verma@nirmauni.ac.in
https://doi.org/10.1016/j.compbiomed.2023.107801
https://doi.org/10.1016/j.compbiomed.2023.107801
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2023.107801&domain=pdf


Computers in Biology and Medicine 168 (2024) 107801S. Pandya et al.
Fig. 1. Comprehensive overview: AI, ML, and DL.
recognition, and Decision Trees for structured data analysis [7]. Deep
Learning (DL), a subset of ML, employs Artificial Neural Network
(ANN) inspired by the human brain’s architecture, excelling in tasks
like image recognition, speech analysis, and natural language process-
ing, all of which contribute to autism understanding and treatment [8].
Techniques like Convolutional Neural Network (CNN) for image anal-
ysis, Recurrent Neural Network (RNN) and Long Short-term Memory
(LSTM) for time-series data, and transformer models for language
understanding are valuable in autism research. The Interrelation of AI,
ML, and DL is illustrated in Fig. 1. Implementing AI in clinical settings
enhances objectivity, reducing potential biases in analysis. AI-based
systems rigorously analyse data, significantly improving the reliability
of autism diagnoses by mitigating human-influenced errors. For in-
stance, AI algorithms excel at neuroimaging data and video analysis,
eliminating subjectivity’s impact and augmenting diagnostic accuracy.
Moreover, these AI models can continually learn and adapt, poten-
tially refining over time, enabling personalized treatment strategies for
autistic individuals.

The rapid growth of AI, particularly in healthcare, holds immense
significance. In our comprehensive review of AI applications in ASD
research, we have delved into both behavioural and biological mark-
ers. Specifically, we have examined markers such as eye gaze, facial
expression, and motor skills as behavioural indicators. In addition,
we have scrutinized Magnetic Resonance Imaging (MRI)/Functional
Magnetic Resonance Imaging (fMRI) and Electroencephalogram (EEG)
as biological markers. Furthermore, we have highlighted the emerging
trend of employing a multimodal approach, where researchers integrate
both types of markers to achieve more precise classification.

Some studies have explored the potential of AI in ASD diagnosis
and its correlation with genetic contributions, underlining the necessity
of a collaborative approach [9]. Others have leveraged neuroimaging
data not only for diagnosis but also for rehabilitation, recognizing the
intricate nature of the brain [10]. Furthermore, innovative methodolo-
gies have been developed, using functional brain network structures
for more accurate autism diagnosis [11]. The utilization of EEG data in
ASD classification has revealed potential biomarkers [12]. Moreover,
the integration of synthetic data generation with GraphRNN has shown
promise in enhancing classification accuracy in autism research [13].
Additionally, investigations into the impact of maternal immune ac-
tivation on ASD-related neurodevelopmental abnormalities hold great
promise in shedding light on the disorder’s pathogenesis [14].

Contribution

• The following paper offers a thorough overview of the historical
development and current usage of the term ‘‘autism’’. It discusses
how the understanding of autism has changed over time, includ-
ing shifts in meaning and expansions in concepts. The paper also
2

explores the relationship between the historical context and the
current use of AI/ML in autism research, focusing on classification
tasks.

• Autism Research and the Multimodal Approach: While most stud-
ies focus on behavioural or biological modalities, this work takes
a holistic approach. It integrates multiple modalities, including
behavioural and biological markers, to provide a more compre-
hensive understanding of autism spectrum disorders. By doing so,
it opens up new avenues for research and application, offering a
broader perspective on the condition.

• This paper provides a thorough explanation of the AI-based clas-
sification techniques used in various modalities. It discusses the
specific algorithms, models, and techniques for achieving reliable
and precise classification outcomes. By presenting a comprehen-
sive analysis of the classification process, this work serves as a
valuable resource for researchers and practitioners in the field.

• This paper also identified some publically accessible datasets on
different modalities.

• This paper discusses the successes, challenges, limitations, and
future trajectories of autism research and AI/ML. It explores and
suggests potential future directions for researchers.

This diverse research landscape underscores the vast potential of
AI in healthcare, allowing us to gain deeper insights into diseases and
develop more effective treatment strategies. Our work stands out by
encompassing a wide range of modalities and exploring applications of
AI in healthcare.

1.1. Data and statistics

One of the most significant observational studies on autism is con-
ducted through the Center for Disease Control (CDC) surveillance sys-
tem, incorporated into the Autism and Developmental Disabilities Mon-
itoring Network (ADDM). This network actively monitors ASD cases, as
seen in Fig. 2, which illustrates the annual prevalence rate of autism.

According to the World Health Organization (WHO), 1 in 160 chil-
dren worldwide are diagnosed with autism. Recent research from the
ADDM Network, tracking 11 areas across the United States, estimates
that approximately 1 in 44 children were diagnosed with ASD in 2018.
This is a higher figure than the previous report’s predictions, which
estimated that 1 in 54 8-year-old children had an ASD diagnosis in
2016 [15].

While the cause of ASD is not known, research suggests that there
may be genetic and environmental factors. Some people believe that
childhood vaccines may cause this condition, but there is no scientific
evidence to support this theory [16].
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Fig. 2. Global prevalence rate of autism.

1.2. History of autism: Timeline

The history of autism is complex and has evolved. The term ‘‘autism’’
was first coined by psychiatrist Paul Bleuler in 1911 [17] to describe a
series of symptoms he observed in some of his patients with schizophre-
nia. It was not until the 1940s and 1950s that autism was recognized
as a distinct condition. Psychiatrist Leo Kanner [18] published a case
series in 1943, describing 11 children with a condition he called ‘‘early
infantile autism’’ characterized by a lack of social interaction and
communication. At around the same time, psychiatrist Hans Asperger
described a similar condition in a group of children he called ‘‘autistic
psychopathy’’ now known as Asperger syndrome.

Since then, our understanding of autism has continued to develop.
The Diagnostic and Statistical Manual of Mental Disorders (DSM) in-
cluded autism as a separate diagnosis for the first time in 1980. In 2013,
the DSM-5 [19] combined autism, Asperger syndrome, and related
conditions into a single diagnosis called ASD. In the 1990s and 2000s,
research into the causes of autism increased, leading to the discovery
of a genetic basis for the disorder and the identification of several risk
factors, such as prenatal exposure to certain environmental toxins and
prenatal stress. With the help of advances in technology and ML, it
has become possible to study autism more precisely and quantitatively,
leading to a better understanding of the disorder and the development
of new and more effective interventions [4]. Fig. 3 illustrates the
timeline of autism research up until the present.

1.3. Organization

The paper is divided into several sections. In the first Section 1,
Introduction, we provide an overview of autism and AI and discuss
3

their contributions. The Section 2, Search Strategy, details the search
strategy and selection criteria. In Section 3 Related Work: we provide
a comprehensive review of the relevant literature related to ASD and
the use of AI in its assessment. The review covers both behavioural
and biological markers. Section 4, General Flow of AI outlines the
general flow of AI for predicting ASD across various modalities. In
Section 5, Challenges in AI, we discuss the challenges associated with
diagnosing and rehabilitating ASD through AI techniques. Next, in Sec-
tion 6, Available Datasets, we introduce publicly available datasets and
briefly describe each of them. In Section 7, Discussion: we discuss the
study’s findings and their implications for future research. Section 8,
Limitations focus on the study’s limitations, and the paper concludes in
Section 9, Conclusion. Please refer to the roadmap in Fig. 4 for a visual
representation of this structure.

2. Search strategy

In our systematic review focusing on the application of AI ap-
proaches in ASD diagnosis, we employed a comprehensive search strat-
egy to ensure the inclusion of relevant literature. We searched promi-
nent databases, including Scopus, PubMed, IEEEXplore, Wiley, and
Springer, utilizing targeted keywords related to ASD and AI. The spe-
cific terms used encompassed terms like ‘‘Autism’’, ‘‘ASD’’, ‘‘Partici-
pants’’, ‘‘MRI/fMRI’’, ‘‘EEG’’, ‘‘Eye-tracking’’, ‘‘Facial’’, ‘‘DL’’, and ‘‘ML’’.

2.1. Inclusion and exclusion criteria

Our inclusion criteria were as follows:

1. Participants with ASD were included.
2. Studies focusing on DL techniques were considered.
3. Outcomes related to DL in autism research were required.
4. English language restrictions were applied.
5. Studies published up to the search date were considered.
6. Materials such as reviews, meta-analyses, keynotes, narratives,

editorials, and magazines were not considered for inclusion.

2.2. Search process

We initiated our search by conducting a systematic query across
designated databases, yielding an initial set of 2100 records. Following
removing duplicate entries (1380 records) and excluding records for
reasons unrelated to duplication (280 records), we were left with
440 records for further evaluation. These 440 records underwent a
rigorous screening process, during which titles and abstracts were
assessed against predetermined inclusion and exclusion criteria. This
Fig. 3. History of autism: Timeline.
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Fig. 4. A visual roadmap to understand the organization of the study.
excluded 298 papers, leaving 142 reports eligible for full-text retrieval
and assessment. The 142 identified reports underwent a comprehensive
full-text evaluation following the inclusion and exclusion criteria. This
process yielded 84 reports that were considered eligible for subsequent
evaluation. Our eligibility criteria were centred on studies involving
the diagnosis of ASD through AI methodologies, particularly those
incorporating DL or ML approaches. These studies encompassed a range
of diagnostic modalities, including MRI/fMRI, EEG, eye-gaze, facial
expression, and motor skill assessments. Subsequently, reports that did
not meet the required criteria were excluded based on the following
reasons: Lack of discernible outcomes (n = 4), Irrelevance to ASD
diagnosis and AI approaches (n = 7), and Absence of comprehensive
information (n = 13).

After screening, we pinpointed 60 studies that aligned with our
inclusion criteria and were consequently incorporated into our review.
The details of the selected studies, along with their corresponding
database information, can be visually observed in Fig. 5, which presents
a PRISMA diagram [20] outlining the entire procedure. These chosen
studies underwent thorough data extraction and in-depth analysis,
allowing us to amalgamate crucial insights about the application of AI
4

methodologies in the realm of ASD diagnosis.
2.3. Analysis

The specific application of each measurable marker in ASD research
is thoroughly examined in subsequent subsections. The total number of
published studies in this field is visually depicted in Fig. 6 illustrating
the year-wise distribution of studies on AI in ASD research up to 2023.
It is worth noting that, as of now, some studies from 2023 may not
yet be included in the database. Hence, the count for that year may be
underrepresented.

The studies we extracted provided data on various factors, cate-
gorized into a structured table. This table offered insights into the
utilization of AI methodologies for ASD diagnosis. The structured table
encompassed categories such as:

1. behavioural and biological markers quantified,
2. Specific AI/MLDL methods,
3. Participant size ASD and Typically Developing (TD),
4. Dataset used,
5. Age range of participants,
6. Deployment focus,
7. Input data and devices,
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Fig. 5. PRISMA flow diagram for study selection.
Fig. 6. Year-wise distribution of ASD studies utilizing AI methodologies.

8. Study advantages, and
9. Limitations.

2.4. Outline of study selection

The survey results underscore the substantial impact of AI method-
ologies on autism research. AI has demonstrated effectiveness in cap-
turing and quantifying diverse forms of data, ranging from eye gaze
patterns, facial expressions, and motor skills to functional MRI and
magnetic resonance imaging, EEG, and employing multi-modal data
approaches.
5

This review provides a comprehensive analysis of the efficacy of
employing AI techniques in three key areas: (1) Identifying behavioural
and biological markers for diagnosing and characterizing ASD, (2) De-
veloping assistive technologies to support ASD patients in recognizing
and expressing emotions, and (3) Enhancing existing clinical protocols
with AI-driven systems for ASD therapy and automated behaviour
analysis.

3. Related work: Overview of behavioural/biological markers used
in papers

Understanding ASD necessitates a holistic approach that encom-
passes various modalities of data analysis. The convergence of ML
and DL techniques with these diverse data sources has opened new
avenues for unravelling the intricate facets of ASD. This section delves
into the literature on different modalities commonly employed in ASD
research, including eye gaze data (refer Table 1), facial expressions
(refer Table 2), motor skills (refer Table 3), MRI/fMRI (refer Table 4),
EEG (refer Table 5), and the integration of multimodal data (refer
Table 6).

The shown Fig. 7 represents a word cloud created from various
academic papers, displaying the most frequently used terms and high-
lighting the core vocabulary. The bold and larger words indicate a
higher frequency of occurrence, which helps understand critical con-
cepts and ideas. The thematic groupings of words form clusters that aid
in comprehending the interconnectedness. For researchers, the word
cloud is a valuable tool to identify potential areas of interest and
gaps in understanding. It provides a powerful visual summary, helping
researchers to quickly and efficiently comprehend the most important
concepts and ideas in a particular field. The word cloud shows that
autism, machine learning, deep learning, EEG, classification, eyes, and
ASD are the most commonly used keywords in the selected papers.
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Fig. 7. Visualization of key terminology in analysed papers.
Table 1
Summarizing research article using AI approaches for detecting ASD through eye gaze modality.

Ref Method Parti-
cipants

Dataset Age Focus Input/Device Advantages Limitations

[21] ML - KNN 16 ASD, 16
TD

Own 2–10
Yrs

Diagnosis using
Gaze

Tobii EyeX
Controller

Cost-efficient, early detection Small sample sizes

[22] DL 20 ASD, 19
TD

[23] Yrs Visual
Attention
preference

Eye gaze
tracking Data

Deep neural networks Small dataset, Not compared
against traditional diagnostic
methods

[24] SVM and
BOW

20 ASD, 21
TD (Child)
19 ASD, 22
TD (Adult)

[25]
[26]

Eye movement
for diagnosis

Tobii T60 eye
tracker

Early detection and diagnosis
of ASD using face scanning
patterns.

Small sample size

[27] OpenFace
Toolkit

2 ASD, 2
TD

Own Behaviour
Analysis for
Gaze

Camera, Video Novel interface supports video
coding of social attention for
ASD

Evaluated the proposed
interface with limited
variations of videos 180 s long

[28] DL 50 ASD, 50
TD

Own Detection of
eye contact

Videos PiCNN method superior eye
contact detection performance
using computer vision

Dataset imbalanced
distribution, evaluation on
diverse data is needed

[29] DL and
CNN

MaTHi-
Sis

Eye movement
analysis for
affective states

Video, Camera Two-stream CNN approach
captures eye movements and
motion patterns effectively

Imbalanced data, suboptimal
optical flow method

[30] Android
Face
Detection
API

10 ASD, 8
NDD

Own 12–18
Yrs

Attention
recognition for
assistive tech

Mobile Phone,
Video

Engaging educational content
delivery for intellectually
disabled students.

Challenges with tilting along
the y-axis and false alerts with
face detection.

[31] 21 ASD, 21
TD

Own 5–17
Yrs

analysing facial
expressions

Gaze data and
Tobii EyeX
Controller

Provides valuable insights into
the gaze behaviour and
emotion perception of children
with ASD

Small sample size

[32] Bayesian
model

15 ASD, 13
TD

Own 8–43
Months

Gaze pattern
for saliency
analysis

Gaze trajectories,
Eye gaze
tracking system

Flexible mixture weight
distributions, robustness to
outliers, and potential for
hierarchical analysis of
multiple images

Increases computational cost
while integrating interpolation
of single-frame saccades

[33] Modified
DBSCAN

38 ASD,
179 TD

Own Identification
of fixations
and saccades

Eye-tracking
Data

MDBSCAN combines
advantages of dispersion-based
and velocity-based algorithms
for fixation identification

MDBSCAN may not always be
closest to ground truth,
requiring parameter tuning for
optimal performance
3.1. Eye gaze

Individuals with autism often experience developmental delays
when it comes to following the direction of another person’s gaze
6

in social situations. Eye gaze tracking has been utilized in numerous
studies on ASD to explore a variety of behaviours and abilities. For
instance, eye gaze tracking has been used to examine the social at-
tention patterns of those with ASD and their capacity to identify and
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Table 2
Summarizing research article using MLDL approaches for detecting ASD through facial modalities.

Ref Method Parti-
cipants

Dataset Age Focus Input/Device Advantages Limitations

[34] DL, Facial
Action
Coding
System
(FACS)

1 ASD, 1
TD

Own Facial
Expression
recognition for
assistive
technology

Video Unobtrusive facial expression
analysis, Enhanced assessment
of social skills

Human evaluator bias,
Difficulty in detecting subtle
movements

[35] DL, Facial
Action
Coding
System
(FACS)

20 ASD, 19
TD

Own 9–14
Years

Facial
Expression
recognition for
quantitative
assessment

Motion Capture
data, infrared
motion camera

Reveals Facial Expression
Complexity

Limited Generalization

[36] DL, CNN 49 ASD, 39
TD

[37] Train-
ing:
Affect-
Net and
[38]
Emo-
tioNet

Facial
attributes for
ASD
classification

Video, iPad Comprehensive Facial
Attribute Analysis, Improved
Classification Performance

Limited Data

[39] DL, CNN 91 ASD,
1035 NDD,
1126 TD

Own Facial image
Analysis for
diagnosis

Image, camera Potential for Assistive
Technologies, Robustness to
Varied Age Groups

Limited Diversity in
Developmental Disorders

[40] DL 17 ASD Own 6–13
years

Facial
Expression
recognition for
quantitative
assessment

Image sequences Quantitative and Personalized
Assessment,

Small Sample size

[41] DL,
Histogram
Oriented
Gradients
(HOG)
feature
combined
with linear
classifier

5 ASD, 5
TD

DISFA
[42],
SE-
MAINE
[43]
and
BP4D
[44]

65
month

facial
expression
analysis for
diagnosis

Video and
Webcam

Non-invasive, Objective
Assessment, Emotional
behaviour Analysis

Small Sample Size, Limited to
Facial Cues

[45] ML,
Histogram
Oriented
Gradients
(HOG) +
SVM

20 ASD, 20
TD

Own Emotional
recognition for
assistive
technology

Video, Google
glass and mobile
phone

Real-time Emotion Cues,
Improving Eye Contact,
behavioural Aid

Sensory Overload Concerns,
Potential Discomfort

[46] DL 17 ASD, 10
TD

Own 6-13
years

Facial
Expression for
quantitative
assessment

Image sequences analyse facial expressions in
children, providing accurate
evaluations to help improve
emotional competence with
ASD

sample size

[47] Ensemble
classifica-
tion (AWS+
Sighthound
+ Azure)

8 ASD Own 6–12
years

Facial emotion
for mobile
game

Mobile phone Crowdsourced emotion data
for improved recognition

Emotion improvement limits
due to bias and lack of data.

[48] Histogram
Oriented
Gradients
(HOG) +
SVM

8 ASD, 5
TD

Own Facial
Expression for
quantitative
assessment

Video, mobile
phone

Game-based approach captures
natural emotional responses in
children’s home environment

Limited age groups, Specific
prompt categories.
comprehend the emotions of others. Moreover, eye gaze tracking has
been employed to study the effects of speech and language therapy in-
terventions on social attention and communication skills in individuals
with ASD. Researchers studying ASD have found eye gaze invaluable
as it provides a non-invasive and objective measure of social attention
and communication abilities [49].

The study of [21] used an ML approach with KNN for diagnosis
using the Gaze pattern. In [22,28,29] used DL technique, Jiang and
Zhao focus on visual attention preference for diagnosis, they used
Deep Neural Network (DNN) based feature learning and SVM based
classification. In [28], they introduce the novel Pose-Implicit CNN to
eye contact detection during adult–child social interactions in which
7

the adult wears a point-of-view camera that captures an egocentric
view of the child’s behaviour. By analysing the child’s facial regions
and inferring their head pose, we can accurately identify the onset and
duration of the child’s looks to their social partner’s eyes. [29] propose
a novel technique that combines the concept of spatially targeted opti-
cal flow with image processing for affect state recognition concerning
a wide variety of learner types, including children with autism and
mainstream children, deep Neural Networks on image classification, by
adopting a two-stream CNN approach for the recognition task, based on
gaze analysis.

The system proposed by [24] uses ML to identify eye movement
patterns associated with ASD, along with feature extraction and pre-
diction frameworks.[27] developed a system that visualizes automatic

gaze estimation and enables further analysis by experts. [30] presented
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Table 3
Summarizing research article using MLDL approaches for detecting ASD through motor skill modality.

Ref Method Parti-
cipants

Dataset Age Focus Input/Device Advantages Limitations

[50] DL, CNN+
LSTM

20 ASD, 20
TD

Publicly
available

ASD: 9.8
years TD:
9.5 years

Grasping
actions for
diagnosis

Video, Vicon
VUE video
camera

Early autism diagnosis via
video analysis, automated and
objective

Video quality dependency,
limited sensitivity to subtle
autism spectrum variations

[51] Zface to
track pitch,
yaw, and
roll of head
movement

21 ASD, 21
TD

Not
available
publicly

2.5–6.5
years

Head
movement
analysis

Video, camera Objective Measurement, Social
Response Insight, Potential
Diagnostic Cue

Small Sample, Tracking
Constraints, Isolated Analysis

[52] R-CNN From
NODA
program of
Behaviour
Imaging
company

Motion pattern
for diagnosis

Video, Mobile
Phone

Novel motion pattern
representation, potential
diagnostic aid

Limited data diversity,
overfitting risk,
resource-intensive process,
video quality dependency

[53] 4 ASD n/a 5–7 years
old

Gesture
tracking for
music therapy

Video, camera Real-time interaction,
customizable mapping for
therapy

Latency concerns, small and
diverse sample, subjective
progress assessment

[54] 10 ASD n/a Mean age:
9.6 years
old

Body
movement for
emotional
training

Video and
motion capture
data, Microsoft
Kinect v2

Promotes emotional
competence in ASC, Transfer
of learning to facial
expressions

Small sample size, specific age
level, imitation deficits impact
results, limited long-term
assessment

[55] vision
processing,
Robot
Operating
System

n/a Robot-assisted
therapy

Video, Penguin
for Autism
Behavioural
Interventions
(PABI)

Robot-assisted approach
enables early ASD
intervention, features
expressive design for
interactive engagement

Limited by small sample size,
age-specific focus, technical
constraints

[56] Image
processing

6 ASD, 6
TD

n/a ASD: 4.70
±0.70 TD:
4.26
±1.05

Head
movement
analysis for
assistive
technology

Video, NAO
Robot with 2
vertical stereo
cameras

Evaluate an adaptive robotic
system for joint attention tasks

small sample size, limited
interaction time

[57] 5 ASD n/a 10–12
years old

Movement
pattern
analysis for
game-based
therapy

Video, Microsoft
Xbox 360 Kinect

touchless motion-based
gaming for ASD children,
potential learning benefits and
positive emotional effects

small sample size and
methodological limitations

[58] 15 n/a 10–14
years

Movement
pattern
analysis to
support
therapeutic
tool

Video,Microsoft
Kinect

innovative NUI for sensory
integration therapies

small sample size, limited
diversity

[59] ML 44 ASD Own 12–144
months

ASD prediction Developmental
Quotient (DQ)

facilitates tailored
interventions via ML,
integrates clinical data,
highlights gut-brain axis’s role

Limited sample size, gender
imbalance, wide age variation
an assistive system that employs haptic feedback to recover attention
by tracking it with a mobile camera. Their research with people with
varied intellectual disabilities revealed that it could improve learning
without intervention.

In the study by Syeda et al. and Campbell et al. [31,32], they con-
ducted a controlled experiment to investigate face-scanning patterns,
finding that children with autism tend to spend less time looking at
core features of faces (such as the eyes, nose, and mouth), as revealed
by the analysis of gaze data. The study summary is presented in Table 1.

3.2. Facial expression

Facial expressions play an important role in social interaction. A
smile can convey interest, while a frown can indicate sympathy. How-
ever, studies have shown that people with autism struggle to display
appropriate facial expressions at the right moment. They may appear
expressionless or exhibit inexplicable expressions [68].

Currently, computational analysis of facial expressions is an emerg-
ing research topic that could overcome the limitations of human per-
ception. Facial image analysis involves extracting features from facial
8

images to identify potential patterns associated with ASD. DL tech-
niques like CNN have been employed to automatically learn features
from facial images. These models can be trained to detect subtle facial
expressions and characteristics that might indicate the presence of ASD.
Transfer learning from pre-trained models like VGG, ResNet, or custom
architectures can be utilized to improve performance. In the work
of [34,40,46], they focused on qualitative facial expression recognition;
the suggested framework aims to computationally analyse how children
with ASD and TD produce facial expressions. Guha et al. [35] focus
on Dissimilarities in global and local facial dynamics of children with
TD and ASD investigated. Their findings revealed that ASD children’s
dynamic facial behaviour is less complicated, with the eye region being
the primary source of complexity. Li et al. [36] introduced an end-
to-end CNN-based approach for ASD classification that utilizes facial
attributes. Their results indicate that certain facial features are highly
significant and improve classification accuracy by approximately 7%.
Shukla et al. [39] also employed DL techniques, specifically CNNs, for
facial image analysis in ASD diagnosis.

In the work of [41], they worked with DL, Histogram oriented
features combined with CNN for facial analysis. Voss et al. [45] built an
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Table 4
Summarizing research article using MLDL approaches for detecting ASD through MRI/fMRI Modality.

Ref Method Parti-
cipants

Dataset Age Focus Input/Device Advantages Limitations

[60] Mesh
Processing

14 ASD, 28
TD

Own 7–39
Years

MRI for
diagnosis

MRI scanner Innovative WM volume
evaluation technique for
potential ASD diagnosis,
age-related insights

Small sample size, limited
diversity, lack of extensive
clinical validation

[43] Texture
Analysis

34 ASD, 30
TD

ABIDE I
Dataset

4–24
Years

MRI for
biomarker
detection

MRI scanner Innovative radio mic approach
using GLCM texture features
for ASD characterization

Small sample size, restricted
age ranges, single MRI
sequence

[61] Texture
Analysis

539 ASD,
573 TD

ABIDE I
Dataset

MRI for
biomarker
detection

MRI scanner novel multi-scale texture
analysis to identify
neuroanatomical differences in
ASD and controls

Gender imbalanced, Sensitivity
to imaging protocol

[62] Image
Processing

15 ASD, 13
TD

Own fMRI study for
neural bases of
complex
non-social
sound

fMRI scanner Investigates neural basis of
complex sound processing in
autism, reveals auditory
hierarchical organization

Small sample size, lack of
behavioural differences,
uncorrected thresholds

[63] DL, MLP
with 2
Hidden
LayerL-
STM+
SVM

187 ASD,
183 TD

4 Datasets
(NYU,
USM,
OHSU,
UCLA) from
ABIDE-I
fMRI
dataset

fMRI for
diagnosis

fMRI scanner Introduces Auto-ASD-Network,
a novel DL-SVM fusion,
achieving 80% accuracy for
autism classification with fMRI

acks clinical validation, and
demands significant
computational resources.

[64] DL, SSAE 149 ASD,
161 TD

4 Datasets
(LEUVEN,
USM, UM,
UCLA) from
ABIDE
Dataset

fMRI for
diagnosis
detection

rs-fMRI scans Novel DTL-NN method
combines rs-fMRI and transfer
learning for improved
diagnosis

reliance on healthy FC
patterns, potential sample size
impact limit broader
applicability

[65] ML/
Constrained
Autoregres-
sive
Model

31 ASD, 23
TD

San Diego
State
University
cohort of
ABIDE-II
Dataset

fMRI for
diagnosis

Imaging data,
GE 3T MR750
scanner

Integrates functional and
structural data for
comprehensive brain function
understanding and improves
classification

Limited to direct structural
links, impacted by complex
interactions

[66] ML/ SVM 15 ASD, 14
TD

Own
Dataset

fMRI for
diagnosis
detection

fMRI/MRI scans Leverages data-driven fusion
of heterogeneous fMRI
experiments for enhanced ASD
classification

Limited by small sample size,
lack of generalizability, and
data fusion complexities.

[67] ML, inde-
pendent
component
Analysis

24 ASD, 27
TD

Own MRI for
Biomarker
detection

MRI scans/fMRI
scans

Multinetwork Analysis,
Identification of Abnormalities

Limited by small sample size,
lacks direct behavioural
correlations

[44] Multi-
feature-
based
networks
(MFN) and
SVM

66 ASD, 66
TD

4 Datasets
(NYU, SBL,
KUL,
ISMMS)
from ABIDE
Dataset

MRI for
Biomarkers
detection

MRI scans Novel method utilizing
cortico-cortical
similarity-based networks
improves ASD classification
accuracy

Accuracy may be suboptimal,
sample variability due to
multicenter data, exclusion of
subcortical regions, and
generalizability concerns
autonomous facial expression recognition system that runs on Google
Glass and provides the wearer with real-time social cues using com-
puter vision techniques. The study summary is presented in Table 2.

3.3. Motorskills

For children with autism, developing their motor skills can be a
challenge. Many autistic children struggle with gross motor skills such
as running, jumping, and balancing. They may also need help with
fine motor skills, such as grasping small objects, manipulating tools,
and writing. It is essential to provide these children with appropriate
interventions and therapies to help them develop their motor skills.
Occupational therapy, physical therapy, and speech therapy can all
be effective in addressing motor skill deficits in children with autism.
By providing targeted interventions and support, we can help children
with autism reach their full potential and achieve greater independence
in daily life.
9

The study by Zunino et al. [50] conducted a study to investigate the
use of video gesture analysis as a potential method for detecting ASD.
They observed and recorded the behaviours of 20 children with ASD
and 20 TD children performing various activities and used machine-
learning algorithms to analyse their behaviours. The study’s results
showed that the algorithms accurately distinguished between the chil-
dren with ASD and the TD children. The researchers concluded that
video gesture analysis could be a valuable tool for detecting ASD. The
study by Martin et al. [51] showed the differences in head movement
between children with ASD and TD children using objective measures.
They used a head-mounted eye tracker to measure the head movements
of 38 children with ASD and 38 TD children as they watched a video
on a computer screen. The results showed that the ASD group had
less varied and less smooth head movements than the TD group. The
researchers suggested that these differences may be related to atypical
sensory processing in ASD and may have implications for developing
interventions and treatments. In the study by Vyas et al. [52], the
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Table 5
Summarizing research article using MLDL approaches for detecting ASD through EEG modality.

Ref Method Parti-
cipants

Dataset Age Focus Input/Device Advantages Limitations

[69] (MRMR)
feature
selection
method
combined
with

49 ASD, 48
TD

Own 3–6 years Identification
of Autism
using EEG and
Eye gaze
tracking

Extracted
features from
modalities

MRMR feature selection
enhances efficiency, Reveals
autistic children’s atypical face
gaze patterns

Sample size diversity and
feature extraction complexity

[70] Hybrid
Lightweight
Deep Feature
Generation
(Mo-
bileNetV2,
ShuffleNet,
SqueezeNet)

61 ASD, 61
TD

Own Automatic
autism
detection

one-dimensional
local binary
pattern (1D_LBP)
and the
generated
features

Addresses limitations of
previous studies and
demonstrates superiority in
ASD classification using a
large dataset

Real-world implementation
and clinical validation are
required to assess its
effectiveness

[71] SVM +
Multiscale
en-
tropy(mMSE)

79 ASD
infants

Own 6 to 24
month

EEG signals as
a biomarker
for early
detection of
risk for ASD

Extracted feature
Vectors

Reveals distinct EEG
complexity changes in
high-risk infants versus
controls

Accuracy drops with age,
requiring longitudinal studies
for predictive power

[72] Quantitative
electroen-
cephalogra-
phy
(qEEG)

17 ASD, 11
TD

Own 6 to 11
Years

Detection of
Abnormalities
for Diagnosing
ASD

Extracted feature
Vectors

Spectrogram and coherence
analysis identify distinct
abnormalities in alpha and
gamma frequency bands

Small sample size and
medication influence may
affect generalizability

[73] Neural
Network,
Fuzzy Syn-
chronization
Likelihood
(Fuzzy SL)

9 ASD, 9
TD

Own 7 to 13
Years

Investigation of
functional
connectivity in
autism

Selected features Fuzzy SL for autism functional
connectivity, achieves high
accuracy, offers potential
neurofeedback markers

Small sample size, needs
further validation in larger
cohorts

[74] SVM 12 ASD, 12
TD

Own Presence of
autism using
the functional
brain
connectivity

Extraction of
brain
connectivity
features

EEG-based synchronization for
high autism detection
accuracy using complex
networks, discriminant
analysis

Small sample, larger diverse
studies needed for robust
clinical validation.

[75] Douglas–
Peucker with
DL

9 ASD and
10 TD

KAU
[76]

6–20 years Enhances ASD
detection with
EEG recordings
through
ELM-AE-based
data
augmentation

EEG signals Preserves EEG signal integrity
by eliminating segmentation,
achieving high accuracy

Small dataset, computationally
intensive image generation,
limited subject diversity

[77] ROAR for
features

88 ASD Own Age:
15.34±1.58
years

Evaluation of a
CNN for EEG
using
eXplainable
Artificial
Intelligence
(XAI)

EEG CNN with XAI for EEG-based
facial emotion recognition,
featuring a novel ROAR
methodology, and evaluating
XAI saliency-maps for
meaningful feature extraction

Limited sample size, external
validation needed

[70] Hybrid
1D_LBP +
STFT

61 ASD, 61
TD

Own 4–13 Autism
Detection

EEG signals novel algorithms incorporating
deep lightweight features and
ReliefF2 selection, achieving a
high accuracy for ASD
detection

Applicability to clinical
settings and real-world
scenarios needs validation and
testing

[78] Convolutional
Neural
Network
based Feature
Extractor for
BCI Attention
Classification
(CNN-FEBAC)

15 ASD Publicly
access

Analysing the
response and
attention
patterns of
ASD
individuals

EEG P300
signals

Proposing a CNN-FEBAC
framework achieving 91%
accuracy, outperforming
previous methods

Limited dataset size and
subject-specific model lacks
broader applicability
authors developed a method for detecting atypical behaviour in autistic
individuals using video data. They used a state-of-the-art pose estimator
called 2D Mask R-CNN to estimate children’s poses over time in the
video. This allowed them to analyse the movements and postures of
the children. They then trained a CNN to classify whether a given video
clip contained typical (normal) or atypical ASD behaviour. The authors’
approach achieved an accuracy of 72% in detecting atypical behaviour,
10
which outperformed conventional video classification approaches. An-
other study by Margini et al. [53] developed an interactive vision-based
system that produces sounds responding to human body movements. A
group of clinical psychologists and parents of young patients evaluated
the system. The study by Piana et al. [54] estimated a system designed
to help children with ASD recognize and express emotions through their
full-body movements, as captured by RGB-D sensors. RGB-D sensors
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Table 6
MLDL methods for Multimodel approach.

Ref Method Parti-
cipants

Dataset Age Focus Input/Device Advantages Limitations

[79] DL,
ResNet-50
and LSTM

22 ASD and
23 controls
for image
viewing, 20
ASD and 19
controls for
photo
taking

Own
dataset

– Attentional and
image viewing
preference for
diagnosis

Photo sequence
+ Image and
Eye fixations

Computational model for ASD
using photo-taking task,
surpassing human expertise

Limited exploration beyond
ASD, data dependency,
generalizability validation, and
potential complexity in shared
space interpretation

[80] DL, VGG+
SSD

2 ASD, 6
TD

Oxford
hand
and
Ego-
hands
dataset

Chil-
dren: 25
months,
Adults:
25 years

Mutual gaze
and gesture
recognition for
diagnosis

Image/Two
Logitech BRIO
4K Pro RGB
cameras +
Microsoft Kinect

The ENIFP protocol provides
standardized, ASD assessment
through remote accessibility,
expanding screening reach

Small sample size, age range
limitations, environmental
impact, gesture recognition
challenges

[81] DL, Person-
alized
Perception
of Affect
Network
(PPA-net)

35 ASD Own
dataset -
multi-
modal
data set

3–13
years
old

Autism therapy Synchronized
video recordings
of facial
expressions,
head and body
movements,
pose, and
gestures, audio
recordings, and
autonomic
physiology

Personalized DL for autism
accommodates various
emotional states, matching
human experts effectively

Contextual reliance and expert
knowledge needed, posing
challenges with limited or
inconsistent data

[82] Artificial
intelligence

3 ASD Own
dataset

8–13
years
old

Head pose,
body posture,
eye contact,
and facial
expression for
robotics
treatment of
autism

Robokind Zeno
R25 humanoid
robot and a
Microsoft Kinect

Customized treatment protocol
with a social robot mediator
improves eye contact, facial
expression imitation, and
engagement in children with
autism.

Small preliminary study,
potential challenges in
generalizing findings to a
wider ASD population.

[83] PABI Face
Detection:
HOG +
Face
recognition:
LBPH,
Regression
trees,
Perceptive-
N-Point
problem

5 ASD HELEN
dataset

5–8
years
old

Face
recognition,
head pose, and
eye gaze
estimation for
assistive
technology

Video, Penguin
for Autism
behavioural
Intervention
(PABI)

Robot enhances engagement
through personalized,
standardized, and multimodal
interactions in autism therapy.

Small initial study sample,
requiring further research to
establish long-term efficacy
and broader applicability.

[84] – 6 ASD, 2
TD

Own
dataset

4–10
years
old

Analysis of
joint attention
and imitation
accuracy

2 NAO robots,
Microsoft Kinect,
and EEG

study attention and imitation
in ASD children via unique
multi-robot setup, revealing
preferences abilities

Small sample, need more
research for validation

[85] ML for clas-
sification

58 ASD, 48
TD

Own
dataset

3–6
years

Identifying
distinctive
neuroimaging
features

MRI/fMRI High accuracy in
distinguishing low-functioning
ASD preschoolers from
controls using T1w MRI and
DTI

Small sample, potential biases,
need for broader validation.

[86] Multimodal
Fusion

380 ASD BSNIP-
1,
FBIRN,
COBRE,
ABIDE I,
MPRC,
ABIDE
II

3–6
years

Distinguishing
SZ and ASD

fMRI and sMRI High accuracy with combined
FNC and GMV, revealing
differentiating features

No symptom associations,
3-class classification, limited
feature insights

[87] ANNs Multi-
sensor
Data

Continuous
Performance
Test for
Attention ASD

Video and audio,
Sensor

Facial and speech emotion
features through AI enhances
the accuracy of early ASD
identification

Individual emotional and
expressive differences may
affect the accuracy of ASD
prediction.

[88] ML, SVM
with a
linear
kernel

50 children
(ASD + TD)

Own 3 to 6
years
old

sensorized toy
car 2.0 for
low-cost
multi-modal
ASD screening,
early detection

MEMS
accelerometer

Enhanced accuracy with shaft
encoders and acceleration,
low-cost, expert-independent
for initial screening.

Feature selection dependence,
limited depth compared to
fMRI/EEG, further research
needed for validation and
generalization.
11
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can capture colour (RGB) and depth (D) information. In the study, the
authors found an increase in the accuracy of the task (i.e., emotion
recognition) from the beginning to the end of the training sessions. This
suggests that the system was effective in helping children with ASD to
improve their ability to recognize and express emotions through their
movements. The study by Dickstein-Fischer and Fischer [55] created
a robot named Penguin for Autism Behavioural Interventions (PABI)
to facilitate interactive therapy for autistic children. PABI is designed
to engage with autistic children meaningfully during therapy sessions
and is equipped with augmented vision technology, which enhances the
robot’s natural senses, specifically its visual abilities. Similarly, Bekele
et al. [56] created an adaptive robot-mediated intervention architecture
(ARIA) to provide individualized therapy for autistic children. ARIA
is designed to offer joint attention prompts, which involve sharing
attention with others and following their gaze or attention to an object
or event. Since children with autism may struggle with joint attention,
this can affect their social and communication skills. The study by
Bartoli et al. [57] conducted a study exploring the use of motion-based,
touchless games for learning in children with autism. Touchless games
are interactive games that can be played without physical touches, such
as through gestures or body movements. Similarly, Ringland et al. [58]
created a therapeutic tool called sensory paint that enables whole-
body interactions and can potentially be an effective intervention for
children with autism [59]. This study used ML models to find the best
predictors of ASD development and specific characteristics in children
with ASD. It aimed to improve early diagnosis and tailor interventions
using maternal and infant data alongside ADOS-2 scores. The results
highlighted factors like gut disturbances, EEG retrievals, sleep prob-
lems, age at diagnosis, and weight at birth as significant predictors.
The study summary is presented in Table 3.

3.4. Magnetic resonance imaging/functional MRI

In studies on ASD, MRI and fMRI are commonly used imaging
techniques to examine brain structure and function. MRI generates
high-resolution images of the body, including the brain, using magnetic
fields and radio waves. This technique helps researchers investigate the
size and shape of various brain regions in individuals with ASD. In
contrast, fMRI measures blood flow to different brain areas and allows
studying brain function. Researchers can infer which brain regions
are more active by asking individuals to perform specific tasks or
respond to stimuli during the scan. These techniques are essential in
helping researchers better understand the brain basis of ASD and in
developing new treatments or interventions. For instance, Abdelrahman
et al. [60] used MRI scans to create a 3D model of the brain, precisely
measuring the volume of white matter in the segmented brain. By
using white matter volume as a discriminatory feature in the k-nearest
neighbour classification technique, they achieved a 93% accuracy rate.
In the work of Chaddad et al. [43,61], the potential of hippocampal
texture features as a biomarker for the diagnosis and characterization of
ASD was demonstrated using the ABIDE repository. Using fMRI scans,
Samson et al. [62] investigated the differences in complex non-social
sound processing between individuals with ASD and TD. The results
showed that TD individuals had more activity in the anterolateral
superior temporal gyrus with increased temporal complexity, while
ASD individuals had more activity in Heschl’s gyrus.

In the study [63–65], they used a DL technique for fMRI diagnosis;
in the work of [63] propose a method called Auto-ASD-Network, the
power of deep learning for extracting useful patterns from the data
as well as discriminative power of SVM classifier which is a very well
known approach in brain disorder classification.[64] developed a novel
DTL-NN framework by utilizing healthy FC patterns to facilitate the
application of DL models for smaller neuroimaging rs-fMRI studies and
demonstrated enhanced ASD classification compared to DNN models.
The work of [65,65] employed an ML approach that combined a con-
strained autoregressive model with an SVM to distinguish individuals
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with ASD from TD.
In the study, [66], they have used the Multivariate Variate Pat-
tern Analysis approach for task-based and resting-based fMRI record-
ings to investigate which neural markers distinguish individuals with
ASD. Ahmadi et al. [67] demonstrated that individuals with ASD
have lower within-network connections on fMRI images compared to
TD individuals, using independent component analysis. The study by
Zheng et al. [44] employed multi-feature-based networks (MFN) and
SVM to classify individuals with ASD and TD. They found that MFN
significantly improved classification accuracy by approximately 14%
compared to morphological features alone. Their findings suggest that
variations in cortico-cortical similarities could be used as potential
biomarkers in the diagnostic process. The study summary is presented
in Table 4.

3.5. EEG

Brain–computer interface (BCI) is a collaboration between a brain
and a device that enables signals from the brain to direct some external
activity [89]. Human–computer interface is another term for it. BCI
is an emerging research field that has broadened its application to
various fields—a test to see what exists in the brains of autistic subjects.
This is accomplished by obtaining signals from the brain, reading the
signs, and interpreting and analysing the signals. Natural conversation
involves using muscles or nerves to convey, exchange, and share ideas
and feelings with human intent. This causes a complex process in
some brain areas. When neurons are stimulated, an indigenous current
is produced. The amount of signals produced during synaptic move-
ment of dendrites in the cerebral cortex of the brain is referred to as
EEG [90]. The BCI machine executing Signal Processing and Pattern
recognition deduces the signal activity occurring from the brain is
denoted to a Brain Machine Interface [91]. The EEG spikes primarily
in the frontal, parietal, and temporal brain regions. Although the role
of spectral power changes, it is still unclear in the developmental
windows of children with autism; it may be associated with cognitive
and behavioural dysfunctions [92].

In the work of [69], Identifying children with ASD may benefit
from an ML technique that combines EEG and eye-tracking data. The
classification of autistic children against typically developing chil-
dren was done using the minimum redundancy maximum relevance
(MRMR) feature selection method combined with SVM classifiers.
In other work, [70] used hybrid lightweight deep feature genera-
tion for automatic autism detection using an SVM classifier, simi-
larly in [71], Developmental cognitive problems may have an early
biomarker that abnormal EEG signals can identify. Modified mul-
tiscale entropy (mMSE) was calculated based on resting-state EEG
data. In [72], Neurophysiologic diagnostics have been performed using
quantitative electroencephalography (qEEG) to detect abnormalities
in ASD diagnosis. In the work of [73] presented a methodology for
investigating functional connectivity in autism, all wavelet-derived EEG
sub-bands and the full-band EEG are used to calculate brain regions.
Then, using Analysis of Variance, discriminative Fuzzy SLs across and
within various regions and various EEG sub-bands or full-band EEG are
developed for separating autistic children from normal control children
(ANOVA). The enhanced probabilistic neural network classifier is then
utilized to diagnose ASD using the input from the chosen features
accurately. In this study [75], an automated detection method for
ASD using EEG signals was developed. To reduce the number of EEG
samples, the Douglas–Peucker algorithm was applied. Sparse coding
was then utilized to construct EEG rhythm-based images, and an image
data augmentation technique based on Extreme Learning Machine
Autoencoder (ELM-AE) was employed. Finally, pre-trained deep CNN
models were used for classification. The proposed method achieved
remarkable results, with an accuracy of 98.88%, sensitivity of 100%,
and specificity of 96.4%, demonstrating its potential as an effective
tool for automated ASD detection based on EEG signals. In another

study [77], Researchers used the RemOve-And-Retrain (ROAR) method
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to test the reliability and accuracy of XAI techniques for EEG-based
FER tasks. The study included individuals with and without ASD; XAI
methods like LRP were analysed.

LRP showed higher relevances in late-time components for individu-
als with ASD experiencing negative emotions. ROAR involved removing
potentially relevant features and re-validating results. The findings
showed significant differences between TD and ASD binary masks
in late-time components and XAI methods, indicating unique emo-
tional information encoding between the two groups. The study [70]
presents a novel approach for automated autism detection using EEG
signals by combining a one-dimensional local binary pattern (1D_LBP)
and short-time Fourier transform (STFT). Feature ranking and selec-
tion are performed using a two-layered ReliefF algorithm, and the
selected features are inputted into various shallow classifiers. The
results demonstrate that the proposed model achieves a high accuracy
of 96.44% using an SVM classifier. This suggests that the hybrid deep
lightweight feature extractor has strong potential for aiding neurol-
ogists in autism diagnosis as an adjunct tool in medical centres. In
another study by [78], The author proposed CNN-FEBAC, a frame-
work that measures attention in individuals with ASD using CNN
technology to analyse EEG signals. With 91% accuracy on the BCIAUT-
P300 dataset, CNN-FEBAC surpasses previous methods by extracting
significant features and adjusting to individual differences in attention
patterns. This advancement will aid in developing diagnostic and ther-
apeutic tools for ASD by providing accurate assessments of attention.
EEG data records the electrical activity of the brain and is used to study
brain function. ML techniques, such as SVM, RNN, or CNN, can classify
EEG patterns associated with ASD. Feature extraction from EEG data
is crucial, and techniques like wavelet transform or time–frequency
analysis can be employed to capture relevant information. The study
summary is presented in Table 5.

3.6. Multimodel approach

In the field of autism research, various studies have been conducted
to explore the potential of DL and AI in improving ASD screening,
diagnosis, and therapy. For example, Chen and Zhao [79] proposed a
framework that combined information from a photo-taking task and
an image-viewing task with eye-tracking data. By integrating features
extracted from these tasks using CNN and LSTM models, they achieved
significant performance improvement of over 30%, resulting in new
state-of-the-art results for ASD screening. Similarly, Wang et al. [80]
developed a non-invasive system called Expressing Needs with Index
Finger Pointing (ENIFP) for ASD diagnosis, which used DL techniques
to capture the participant’s eye gaze and gestures during the proto-
col. This system successfully assessed mutual attention and gestures,
highlighting the potential of AI in analysing multimodal data for ASD
screening. Additionally, Several studies [81–84] have explored the use
of computer vision in autism therapy through social robots that adapt
their behaviours automatically. By combining multiple aspects such as
eye contact, joint attention, imitation, and emotion recognition, these
systems provide adaptive and personalized interactions, significantly
improving the effectiveness of therapy for children with ASD. Overall,
these approaches have shown great potential in advancing autism
research, surpassing previous state-of-the-art methods, and improving
the accuracy and effectiveness of interventions for individuals with
ASD. The study by Kim et al. [85] focused on using ML classifiers
to differentiate low-functioning preschoolers with ASD from typically
developing controls using T1-weighted MRI and DTI data. The clas-
sification achieved an accuracy of 88.8%, sensitivity of 93.0%, and
specificity of 83.8%, with specific neuroimaging features identified as
key contributors to the classification. In another study by Du et al. [86],
the Neuroimaging fusion method was used to classify ASD patients
using fMRI and sMRI data from multiple datasets, focusing on distin-
guishing the disorders. Emotion-based ASD identification using ANN
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approach by [87], focusing on video and audio data of autistic and
non-autistic children to predict ASD through facial and speech emotion
features. In the study by [88], the author introduces a novel multi-
modal ASD screening tool. The upgraded design includes shaft encoders
to capture rotational tendencies in children with ASD. Moreover, they
have enhanced the feature selection strategy, improving accuracy in
multi-modal ASD symptom analysis. The study summary is presented
in Table 6.

In summary, this literature section has delved into various modal-
ities utilized within autism research, spanning eye gaze, facial expres-
sions, motor skills, MRI/fMRI, EEG, and multimodal data. A more
extensive examination of behavioural and biological markers is avail-
able in the discussion Section 7, offering in-depth analyses for each
modality. Additionally, the discussion section includes visual repre-
sentations encompassing behavioural and biological markers across all
modalities.

4. General flow of AI

4.1. Data collection and preprocessing:

The research begins with collecting diverse data modalities that
capture different aspects of autism-related behaviours and neurological
patterns. Eye-tracking systems record gaze trajectories during tasks
involving visual stimuli, while facial expression analysis tools extract
facial features and emotions from recorded videos. Motor skill as-
sessments capture fine and gross motor abilities, while neuroimaging
techniques like MRI/fMRI capture structural and functional brain char-
acteristics. EEG records neural electrical activity, providing insights
into brainwave patterns. Collected data undergoes pre-processing to
enhance quality and ensure compatibility for subsequent analysis.

4.2. Feature extraction:

Extracting features is crucial to enable AI algorithms to process
and comprehend information from various sources. In the context of
eye gaze and facial expression data, fixation duration, gaze shifts, and
emotional expressions are essential features that provide insights into a
person’s visual focus and emotional state. AI techniques enhance this by
extracting microexpressions, which are subtle and rapid facial muscle
movements that convey nuanced emotions not easily discernible by the
human eye alone. Similarly, assessments of motor skills yield features
such as movement accuracy and coordination metrics, which provide
valuable information about a person’s physical ability and precision in
performing tasks. AI algorithms can also extract biomechanical parame-
ters such as joint angles and forces, providing a deeper understanding of
movement mechanics and their impact on performance. Additionally,
neuroimaging techniques such as MRI/fMRI yield features including
regional brain activity and connectivity patterns, illuminating the func-
tional interactions within the brain. AI techniques expand on this by
extracting features related to brain network dynamics, uncovering the
strength and changes in connectivity over time. Furthermore, EEG data,
recorded by scalp electrodes, is transformed into spectral power and
connectivity features, enabling analysis of electrical brain activity and
synchronization across regions. AI facilitates the extraction of Event-
related potentials (ERPs) and time-locked brain responses to specific
stimuli or tasks, offering valuable insights into cognitive processes such
as attention and memory. These extraction techniques convert raw
data into a format that AI algorithms can effectively analyse. This
advancement enables various applications, from emotion recognition
to cognitive assessment, significantly enhancing our understanding of
human behaviour and brain function.

4.3. Feature integration and multimodal data fusion:

Combining information from different modalities often leads to

richer insights. Multimodal data fusion integrates data from sources
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like eye gaze, facial expressions, motor skills, MRI/fMRI, and EEG. This
fusion enhances the understanding of complex interactions between
behavioural and neurological aspects of autism. AI techniques like DL
can be employed to handle the complexity of multimodal data.

4.4. ML for classification tasks:

ML algorithms are commonly employed in autism research for
classification tasks such as predicting specific diagnostic outcomes or
classifying autism severity levels based on extracted features. One of
the most commonly used ML algorithms in autism research, the Support
vector machine, is powerful for binary classification tasks. They work
by finding a hyperplane that maximizes the margin between classes.
SVMs can also be extended to handle multi-class classification. Random
Forest is an ensemble learning method that combines multiple decision
trees to make more accurate predictions. It is robust and can effectively
handle high-dimensional data. Despite its name, Logistic Regression is
used for binary classification tasks and models the probability of a sam-
ple belonging to a particular class. KNN classifies data points based on
the majority class among their K-nearest neighbours. It is intuitive and
easy to implement. Naive Bayes is a probabilistic algorithm based on
Bayes’ theorem, assuming independence between features. It is useful
for text classification tasks. Decision Trees split data based on features
to create a tree-like structure for classification. They are interpretable
and can handle both categorical and continuous features.

4.5. DL for classification tasks:

DL is a type of ML that involves training neural networks to learn
hierarchical representations from the data automatically. In autism
research, DL models are highly effective for tasks that require working
with large, high-dimensional datasets. Here are some common types
of DL architectures: CNN is particularly effective for tasks that involve
images. They use convolutional layers to automatically extract features
from images, making them suitable for facial expression analysis and
MRI/fMRI data analysis tasks. RNNs are designed to handle sequences
of data. They are helpful for tasks that involve time-series data, such as
EEG analysis, where the temporal order of data points is crucial. LSTM
Networks is a specialized form of RNNs designed to capture long-term
dependencies in sequential data. They are adequate for tasks that have
complex temporal patterns. Autoencoders are used for unsupervised
learning tasks. They aim to reconstruct the input data and can be
applied to anomaly detection or feature extraction tasks. Whereas
Transfer Learning is a technique that involves pre-training a neural
network on a large dataset and then fine-tuning it on a specific task.
It is useful when there is limited labelled data available.

4.6. Model development and training:

AI models, such as ML algorithms and neural networks, are de-
veloped to analyse the extracted and integrated features. Supervised
learning may involve training models to predict specific diagnostic
outcomes or classify autism severity levels based on the features. Un-
supervised techniques, like clustering or dimensionality reduction, can
identify hidden patterns within the data.

4.7. Behavioural and neurological pattern recognition:

Trained AI models can effectively recognize patterns indicative of
autism traits or neurological abnormalities. These models can identify
subtle behavioural nuances, aberrant brain connectivity, or atypical
neural activations that may serve as biomarkers for ASD.

4.8. Interpretation and clinical insights:

The identified patterns and correlations are then interpreted in the
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context of existing autism research and clinical knowledge. The insights
from AI analysis can provide a deeper understanding of autism-related
behaviours, cognitive processes, and underlying neural mechanisms.

4.9. Validation and refinement:

The generated findings are subject to validation using independent
datasets or cross-validation techniques to ensure the robustness and
generalizability of the AI models. Feedback from clinicians and domain
experts helps refine the models and improve their diagnostic and
predictive accuracy.

Fig. 8 offers a comprehensive visual representation of the complete
workflow, encompassing various stages, starting with the initial data
pre-processing and proceeding through subsequent steps to the final
prediction or classification task.

5. Challenges in AI

AI is a rapidly growing field with a wide range of potential ap-
plications. However, the development and deployment of AI systems
also come with some challenges that must be addressed to ensure the
safe, fair, and effective deployment of AI in various domains. These
challenges include data availability and quality, interpretability and
explainability, safety and security, privacy, and data protection. These
challenges must be overcome to fully realize AI’s potential in various
fields (see Table 7).

5.1. Data quality

The data quality used to train AI models significantly affects their
accuracy and predictability. Errors, biases, and noise can lead to mis-
interpretation and incorrect results. To achieve reliable predictions in
autism research, where subtle patterns and behaviours are significant, it
is crucial to ensure data quality through careful preparation, cleaning,
and validation. Eliminating data biases is also necessary to prevent AI
models from amplifying discrimination [93].

5.2. Data volume and availability issue

AI algorithms, especially DL models, thrive on large amounts of data
to learn effectively and generalize well. However, autism research often
suffers from limited and diverse datasets. The need for well-labelled
data challenges training accurate and robust AI models. Generating and
curating sufficient data that captures the complexity of autism is essen-
tial for overcoming this challenge. Collaboration between researchers,
clinicians, and data collection initiatives can play a pivotal role in
gathering the necessary data [93].

5.3. Ethical considerations

When dealing with medical data, especially related to autism, strict
adherence to ethical guidelines and legal regulations is crucial. Patient
privacy, data security, and informed consent are of utmost importance.
AI algorithms must be designed with privacy safeguards, encryption,
and access controls to prevent unauthorized use of sensitive informa-
tion while balancing data utility and patient confidentiality [98].

5.4. Interpretability

DL algorithms can map complicated, nonlinear functions, making
them challenging to understand. This becomes an essential factor to
consider in healthcare applications because the capacity to understand
the factors that influence outcomes is just as crucial as the capacity
to anticipate the outcome correctly. Interpretability is essential to
encourage healthcare professionals to make a decision based on the
changes proposed by algorithms and to enable their rapid adoption

in the clinical setting, where systems are intended to improve the
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Fig. 8. Methodology for ASD prediction.
Table 7
Challenges in AI-driven Autism Research.

References Challenges Description

[93] Data Quality The accuracy and reliability of AI models heavily depend on the quality of input data. Noisy,
biased, or insufficient data can lead to suboptimal results.

[93] Data volume and
availability

Autism research often deals with limited and heterogeneous datasets, which can hinder the
development of robust AI models. The need for well-labelled data poses a significant challenge.

[94] Ethical Considerations Processing sensitive medical data raises ethical concerns regarding privacy, consent, and data
security. Ensuring compliance with regulations and safeguarding patient information is paramount.

[95] Interpretability Many AI algorithms operate as black boxes, making understanding the rationale behind their
decisions challenging. This lack of interpretability hinders their adoption in clinical settings.

[96] Algorithm Complexity Advanced AI techniques, such as DL, can be computationally intensive and resource-demanding.
Implementing and training these models require substantial computational power and expertise.

[97] Clinical Integration Bridging the gap between research and clinical practice is challenging. AI solutions must
seamlessly integrate into clinical workflows, requiring collaboration between AI researchers and
medical professionals.
decision-making capabilities of healthcare professionals. As a result,
significant initiatives within the DL community to address the issues
of interpretability and explainability can facilitate the adoption of DL
techniques in healthcare [95]. To overcome the interpretability issue,
XAI aims to offer comprehensible explanations for its actions. While
achieving this goal has been challenging, numerous methods have
been suggested to enhance the transparency of artificial intelligence,
gain the trust of clinicians and achieve favourable clinical results.
Understanding DL algorithms can be challenging due to their ability
to map complicated, nonlinear functions. This is especially important
in healthcare applications, where it is crucial to comprehend the fac-
tors that impact outcomes. Interpretability plays a significant role in
encouraging healthcare professionals to make decisions based on the
recommendations provided by algorithms. It also enables swift adop-
tion in clinical settings, where the goal is to enhance decision-making
capabilities. Therefore, the DL community has taken significant steps
towards addressing the issues of interpretability and explainability,
which could facilitate the adoption of DL techniques in healthcare [95].
eXplainable Artificial Intelligence (XAI) aims to provide transparent
and understandable explanations for its actions to overcome the in-
terpretability issue. Although achieving this goal may be challenging,
various methods have been proposed to increase the transparency of
artificial intelligence, gain the trust of clinicians and achieve favourable
clinical outcomes [99].

5.5. Algorithm complexity

Advanced AI techniques often require much computational power,
demanding adequate hardware, model creation, and training knowl-
edge. The complexity of AI algorithms can be a barrier in autism
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research and clinical settings where resources may be few. It is crucial
to find approaches to optimize and modify these algorithms so they can
operate effectively with the resources at hand [96].

5.6. Clinical integration

Translating DL models from research to clinical practice necessitates
a thorough validation process encompassing clinical trials, comparisons
with established standards, and rigorous assessments of efficacy and
safety. This validation must be complemented by seamless integration
with Electronic health records (EHR) and clinical workflows, address-
ing technical challenges such as data interoperability, security, and
real-time processing. Additionally, considerations for scalability, user
interface design, and regulatory compliance are paramount. Success
in this endeavour hinges on close collaboration between researchers,
clinicians, regulatory bodies, and technical experts to ensure the mod-
els are accurate but also practical and safe for real-world clinical
application [97].

6. Available datasets

The reviewed papers utilized public datasets to examine markers in
individuals with autism. The datasets were selected based on the mark-
ers and AI methods employed. Table 8 contains the sources for these
datasets, ensuring they are compatible with the research objectives.

6.1. Pavis dataset

The dataset includes trials conducted by both autistic and non-
autistic children. The primary goal is to complete this two-class clas-
sification. Andrea Zunino, Pietro Moreno, and other researchers from
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Table 8
Available Datasets for ASD.

Reference Dataset Type Link as on date:22-08-2023

[100] Pavis Dataset Video https://pavis.iit.it/autism-spectrum-disorder-detection-dataset
[101] Stanford Home Video Project CSV https://github.com/qandeelt/Tariq-Wall-2018-PLOS-MEDICINE
[102] The DREAM Dataset Eye gaze https://github.com/dream2020/data
[103] National Database for Autism Research (NDAR) Text, numeric, image, time series, etc. https://healthdata.gov/dataset/National-Database-for-Autism-Research-NDAR-/7ue5-z77y/data
[104] SFARI Gene Dataset Genetic and phenotypic data https://www.sfari.org/resource/autism-cohorts/
[105] ABIDE MRI http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
[106] MMDB Multi-Model https://cbs.ic.gatech.edu/mmdb/dataset.php
[107] DE-ENIGMA Multi-Model https://deenigmadb.wordpress.com/
Istituto Italiano di Tecnologia provided this video dataset consisting of
video clips of children with ASD and IQ-matched TD children doing
reach-to-grasp movements. The children from both groups were asked
to grasp a bottle and do four distinct motor actions: placing, pouring,
passing to pour, and passing to place. Researchers have attempted to
classify whether steps are performed by a normal or an autistic child
by solely processing the section of video data showing the grasping
gesture, as motivated by recent studies in neuroscience [100].

6.2. Stanford Home Video Project

The Stanford Home Video Project dataset [101] is a collection of
family and children’s home recordings that aims to examine social
interaction and development in the context of ASD. These videos, shot
in real-world household environments, provide insightful views into
the activities, relationships, and growth patterns of kids with ASD.
Researchers have used this dataset to examine early signs of ASD,
language development, and numerous social communication topics.
Researchers can use the dataset’s open accessibility on GitHub to ex-
plore the information, identify behavioural trends, and acquire a better
knowledge of early development and autism [108].

6.3. Dream dataset

The behavioural data is obtained from 61 children diagnosed with
ASD. The information was gathered in a large-scale Robot Enhance
Therapy (RET) study. Over 3000 therapy sessions and over 300 h
of therapy are included in the dataset. A therapist supervised half
of the children while they engaged with the social robot NAO. The
other half, the control group, had direct contact with a therapist. Both
groups followed the ABA methodology. Three RGB cameras and two
RGBD (Kinect) cameras were used to record each session, providing
precise information on the children’s behaviour during therapy. Body
motion, head position and orientation, and eye gaze characteristics are
all defined as 3D data in a shared frame of reference in this public
release of the dataset. Participants’ age, gender, and autism diagnosis
(ADOS) factors are also provided in the metadata. We are releasing
this information in the hopes of spurring further data-driven research
towards better therapy approaches and a better knowledge of ASD in
general [102].

6.4. National Database for Autism Research (NDAR)

The NDAR [103] is an NIH-funded research data repository that
aims to accelerate progress in ASD research by promoting data sharing,
harmonization, and reporting findings. It acts as a data repository and
a scientific community platform, with standardized tools and policies
for integrating computing resources from scientific research institu-
tions, private foundations, and government organizations funding ASD
research. NDAR has collaborated closely with the ASD research commu-
nity to develop a data dictionary with over 300 clinical, imaging, and
genomic research terminologies. Researchers must structure their data
following an existing data definition or create a new one accessible to
other researchers through NDAR. As the world’s largest archive, NDAR
makes all forms of data available at every biological and behavioural
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level. As of November 2013, qualified investigators can access data
from nearly 90,000 research participants through the NDAR portal. The
public website of NDAR also summarizes the data available, making it
a valuable resource for ASD research.

6.5. SFARI Gene dataset

The SFARI Gene [109] web portal seamlessly integrates various
types of genetic data generated by research studies, encouraging the
development of new hypotheses in the process. SFARI Gene uses a
systems biology method to incorporate information on autism potential
genes from its original Human Gene module to data from various
supplementary data modules. The data establishing the association
between ASD risk genes and autism is then graded using a set of
annotation guidelines created in cooperation with an external advisory
group and categorized into specific categories.SFARI Gene’s Human
Gene module provides a comprehensive collection of genes examined
in the context of autism. It includes information on the genes, scholarly
article references, and a summary of the evidence tying the genes
to ASD. The SFARI Gene Copy Number Variant module is a separate
resource that catalogues recurrent single-gene and multi-gene deletions
and duplications in the genome and describes their possible link to
autism. The Animal Models Module of SFARI Gene offers information
about lines of genetically engineered mice that could be used as autism
models. The nature of the targeting construct, the background strain,
and, most crucially, a complete summary of the phenotypic traits most
relevant to autism are all included in this material.

6.6. Autism Brain Imaging Data Exchange (ABIDE)

The Preprocessed Connectomes Project (PCP) has preprocessed neu-
roimaging data from the ABIDE [105] for public use and sharing. ABIDE
is a collaborative effort between 16 international imaging sites, which
have collected and openly shared neuroimaging data from 539 individ-
uals with ASD and 573 healthy controls as part of the International
Neuroimaging Data Sharing Initiative (INDI). These datasets include
structural and resting state functional MRI data and various phenotypic
data.

To preprocess data from ABIDE, five teams utilized their preferred
technologies. The Connectome Computation System (CCS), the Con-
figurable Pipeline for the Analysis of Connectomes (CPAC), the Data
Processing Assistant for Resting-State fMRI (DPARSF), and the Neu-
roImaging Analysis Kit were employed for functional preprocessing.
The CPAC software calculated statistical derivatives for each pipeline
and technique to standardize the variance between outputs to solely
preprocessing. Three pipelines were used for structural preprocessing
and cortical measure calculation: ANTS, CIVET, and FreeSurfer.

6.7. Multimodal Dyadic behaviour dataset

The Multimodal Dyadic Behaviour (MMDB) dataset [106] stands
as a distinctive compilation comprising 160 instances of multimodal
recordings encompassing video, audio, and physiological data. These
recordings are accompanied by annotations that shed light on the
social and communicative tendencies of 121 children aged between
15 and 30 months. These invaluable records were collated using a

methodology termed the Rapid-ABC sessions. The Rapid-ABC sessions

https://pavis.iit.it/autism-spectrum-disorder-detection-dataset
https://github.com/qandeelt/Tariq-Wall-2018-PLOS-MEDICINE
https://github.com/dream2020/data
https://healthdata.gov/dataset/National-Database-for-Autism-Research-NDAR-/7ue5-z77y/data
https://www.sfari.org/resource/autism-cohorts/
http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
https://cbs.ic.gatech.edu/mmdb/dataset.php
https://deenigmadb.wordpress.com/
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Table 9
Application of ML/DL to ASD Analysis in Different Modalities.

Modality Data collection Pre-processing Feature extraction Model architecture Training & Validation Interpretation Clinical applications Advantages Disadvantages

Eye gaze
Record gaze
patterns

Clean, normalize
gaze coordinates

CNNs analyse gaze
patterns

CNNs Train on gaze data,
validate

Identify gaze
patterns related to
ASD

Understand social
interaction and
sensory aspects

Direct insight into visual
attention

Challenges in
interpretation, affected by
lighting and calibration,
limited to controlled
settings, may miss
spontaneity

Facial Images Gather facial
images

Normalize, resize,
align

CNNs learn facial
features

CNNs Train with labelled
data, validate

Visualization of
influential regions

Assist in diagnosis
and severity
assessment

Non-invasive, allows
visual evaluation of facial
expressions

Subjective interpretation,
context-dependency,
cultural variability, limited
to visible cues

Motor Skills Collect motion
capture data

Filter, normalize,
segment

RNNs capture motor
patterns

RNNs, LSTMs Train on motor data,
validate

Identify motor
deviations in ASD

Monitor motor
behaviour and
intervention progress

Provides precise motor
behaviour measurements,
captures intricate motor
patterns

Challenges include
external factors, skill
variability, and issues
with severe impairments

MRI/fMRI Acquire structural/
functional

Skull strip,
normalize, motion
correction

CNNs/3D CNNs for
structure

CNNs, RNNs, 3D
CNNs

Train on brain
images, validate

Discover brain
differences in ASD

Uncover structural/
functional brain
changes

Offers detailed brain info,
pinpoints ASD-related
brain differences

Expensive and
time-consuming, Motion
artefacts, Restricted to
tolerant individuals

EEG Record brain
activity

Noise removal,
segmentation

RNNs capture
temporal patterns

RNNs, LSTMs Train on EEG
sequences, validate

Identify brain
patterns related to
ASD

Detect ASD-related
neural signatures

Offer precise brain
activity timing, identify
ASD-related brainwave
patterns

Limited to spatial
resolution, Pre-processing
challenges, and variation
due to electrode
placement
involve a dynamic assessment process spanning 3 to 5 min each. Within
this timeframe, a series of five semi-structured play interactions are
orchestrated. During these interactions, the examiner adeptly draws
social attention, cultivates interactive exchanges, and observes the
non-verbal communication nuances of the participating child. This
methodology captures the essence of the child’s developmental stage
and their propensity for interpersonal interactions, making the MMDB
dataset an indispensable resource for advancing our understanding of
early childhood social and communicative behaviours.

6.8. DE-ENIGMA dataset

The DE-ENIGMA dataset [107] stands as a comprehensive and freely
accessible resource for extensive multi-modal research, encompassing
diverse data types such as audio, video, and depth information. It
has been meticulously compiled to capture the interactions of children
on the autism spectrum, thereby serving as a valuable asset for be-
havioural investigations. The study featured the participation of 128
children diagnosed with autism, each contributing to the dataset. The
experimental design entailed the random assignment of children into
distinct age groups. Participants were allocated to either a robot-led
or a researcher/therapist-led teaching intervention within each group.
This intervention was carried out across a series of concise sessions,
fostering a dynamic learning environment. The dataset encompasses a
remarkable volume, totalling around 13 terabytes of multi-modal data,
corresponding to approximately 152 h of recorded interactions. To en-
hance the dataset’s utility, a subset of 50 children’s data has undergone
meticulous annotation by experts. This annotation encompasses key
aspects such as emotional valence, arousal levels, audio characteristics,
and body gestures. The availability of this annotated data positions it
as a prime resource for future ML research focusing on autism-related
inquiries. The DE-ENIGMA dataset thus not only advances our under-
standing of autistic children’s interactions but also provides a robust
foundation for developing and refining machine-learning approaches
tailored to autism research.

7. Discussion

This paper provides a comprehensive review of the application of AI
in predicting ASD using various behavioural and biological markers. It
discusses how different modalities impact the accuracy of predictions
and traces the historical progression of autism research. The method-
ology for employing AI in ASD prediction across other modalities is
detailed, focusing on the necessary steps for integration into autism
research. However, the review highlights persisting challenges, particu-
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larly in accurately quantifying real-world data, especially when dealing
with image or video streams. The assessment of publicly available
datasets related to behaviour analysis is emphasized as a valuable
resource for researchers conducting ASD studies involving behaviour
and biological analysis. The summarized analysis in Table 9 offers a
brief overview of the critical stages and outcomes in the entire process.
It dissects the process into essential components such as data collection,
pre-processing, feature extraction, model architecture, training, vali-
dation, interpretation, clinical applications, and associated advantages
and disadvantages for each modality. This table serves as a valuable
tool for researchers and clinicians seeking insights into diverse ap-
proaches utilized in ASD studies, ranging from analysing eye gaze
patterns, facial images, and motor skill assessment to examining brain
MRI/fMRI and EEG data. It underscores the potential benefits of these
approaches, such as gaining direct insights into visual attention, non-
invasive facial image analysis, and precise timing of brain activity.
Simultaneously, it acknowledges the limitations and challenges, such as
subjectivity in interpretation, reliance on controlled settings, and vari-
ations in data quality. This comprehensive summary provides valuable
insights for individuals involved in ASD research and healthcare, offer-
ing essential information about techniques and their implications. For
a more detailed understanding of the model’s operation, please refer to
Fig. 9. This visual representation guides you through all the modalities,
starting from data collection, proceeding through preprocessing, model
implementation, and ultimately leading to the prediction phase.

7.1. Behavioural modalities for ASD classification tasks

Behavioural modalities such as eye gaze, facial expression, and
motor skills are rich sources of information for identifying ASD. Thanks
to advanced ML and DL techniques, researchers have made significant
progress in utilizing these modalities to distinguish individuals with
ASD from their neurotypical peers. In this section, we will provide an
in-depth analysis of how each behavioural modality can be effectively
used in classification tasks for ASD.

7.1.1. Eye gaze analysis:
Machine learning and deep learning techniques have revolutionized

the analysis of eye gaze data in the context of ASD. This methodology
involves extracting various features, such as fixation durations, saccade
patterns, and gaze trajectories, which serve as discriminative markers
in classification tasks [21,22]. Using labelled datasets, classification
models like SVM, random forests, and deep neural networks can be
trained to differentiate between individuals with ASD and typically
developing individuals [22]. Furthermore, machine learning models
can identify context-dependent gaze patterns, providing nuanced in-

sights into social attention differences during specific situations such
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Fig. 9. Overall block diagram for ASD classification using different modalities.
as conversations or viewing emotions. The advantages of using eye
gaze data for ASD research are significant. It offers an objective and
quantifiable measurement of social attention, reducing potential biases
associated with self-reporting or observer-based assessments [24,27].
It also holds the potential for early detection, enabling timely inter-
vention and support. The analysis of eye gaze data further facilitates
the creation of individualized interventions tailored to the specific gaze
behaviour and needs of individuals with ASD while contributing to a
18
deeper understanding of the condition’s underlying mechanisms [28].
However, there are notable limitations to consider. ASD is character-
ized by significant heterogeneity, and machine learning models may
struggle to capture the full diversity of gaze patterns [29]. Ethical
and privacy concerns arise from collecting sensitive and personal data
through eye gaze. Additionally, generalizing findings across different
contexts, cultures, and age groups can be challenging, as various factors
influence gaze behaviour [30,31]. Lastly, the quality of eye gaze data,
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including calibration errors, occlusions, and participant fatigue, can
impact the accuracy of machine learning models and their ability to
make reliable predictions. Therefore, researchers in this field must
be mindful of these limitations and ensure robust and ethical data
collection and analysis practices [32,33].

7.1.2. Facial expression
Facial expression analysis is a crucial tool in identifying ASD [34].

It involves capturing pictures or videos of individuals, removing noise,
resizing images, and standardizing the data [35]. The dataset is then
split into training and testing sets, and feature extraction is performed.
This process involves analysing facial cues using various ML and DL
algorithms, such as SVM and CNN [36,39]. ML models focus on extract-
ing relevant features, while SVM excels in classification tasks by finding
optimal hyperplanes. CNNs, on the other hand, are excellent at learning
hierarchical features from images. DL models, such as RNNs and LSTM
networks, are effective for analysing sequences of facial expressions
by capturing temporal dependencies [40,41,45]. Attention mechanisms
can also be used to concentrate on specific facial features. This method
offers advantages such as non-invasive, objective assessment, quan-
tifiable data for tracking progress, and potential for early detection
of ASD [46]. However, there are some limitations to this approach,
including context sensitivity of expressions, individual variability in
emotional expression, reliance on visible expressions, susceptibility to
environmental factors, and ethical considerations regarding privacy
and consent when dealing with sensitive data [47]. Overall, facial ex-
pression analysis using ML and DL methods holds promise for providing
valuable insights into emotional processing differences in individuals
with ASD [48].

7.1.3. Motor skills analysis:
Extracting kinematic features from fine and gross motor movements

in individuals with ASD is an area where ML and DL algorithms can be
very helpful [50]. However, before we can delve into feature extraction,
we must first carry out data preprocessing. This crucial step involves
cleaning the motor data by removing any noise or outliers, normalizing
it, and potentially resampling it to ensure accuracy [51,52]. Once the
data is prepared, feature extraction comes into play. In motor skill anal-
ysis, feature extraction allows us to identify key attributes that describe
the movement patterns. These attributes could include measures of
movement speed, such as velocity or acceleration, metrics of accuracy,
like trajectory smoothness, and coordination indicators, such as the
degree of joint synchronization [53,54]. ML models can then use these
extracted features to classify individuals based on their motor skills
and ability to perform specific tasks or activities of daily living [55].
On the other hand, DL models can capture complex temporal patterns
in motor data, allowing for a more in-depth exploration of motor skill
characteristics associated with ASD [56,57]. It is important to note that
while this approach offers promising insights, it relies heavily on the
data quality and may be influenced by various confounding variables
that need to be carefully considered in the analysis [58]. Nonetheless,
this methodology represents a potent tool for understanding how ASD
manifests in motor behaviour and for tailoring interventions to improve
functional abilities in individuals with ASD [59].

7.2. Biological modalities in ASD classification

Integrating biological modalities, such as MRI/fMRI and EEG, with
ML and DL techniques has revolutionized the classification of ASD. This
multidimensional approach provides a comprehensive understanding
of the neurobiological underpinnings of ASD, offering insights that
complement behavioural assessments. The combination of MRI/fMRI
and EEG with ML/DL techniques has proven to be a powerful tool for
classifying ASD, enabling researchers and clinicians to gain a deeper
understanding of the complex and heterogeneous nature of the dis-
order. By leveraging these modalities, researchers and clinicians can
more accurately diagnose and treat individuals with ASD, ultimately
improving outcomes for those affected by this condition.
19
7.2.1. MRI/fMRI
MRI and fMRI are frequently used in the classification of ASD [60].

MRI allows for extracting structural features such as regional volumes,
cortical thickness, and white matter integrity, which ML algorithms
can analyse to identify specific brain regions or circuits with atypical
morphology [43]. This analysis provides valuable insights into the
structural basis of ASD. fMRI measures blood flow changes in the
brain, enabling the analysis of functional connectivity networks. ML
models can distinguish differences in connectivity patterns, serving as
unique markers for classification [61,62]. Task-based fMRI examines
brain activation patterns during specific tasks like social cognition
tasks, revealing variations in neural processing related to ASD. Before
analysis, it is essential to preprocess the data by taking steps such
as motion correction, spatial normalization, and possibly denoising
techniques for artefact removal [63,64]. In MRI, feature extraction in-
volves quantifying anatomical properties, whereas in fMRI, it includes
measures of functional connectivity, activation patterns, or task-specific
responses [65]. The advantages of these approaches include objective
assessment, the potential for early detection, and insights into the
neurobiological basis of ASD [66]. However, the complexity of data
processing, interpretability of findings, heterogeneity in ASD, and the
impact of data quality on results present significant challenges. There-
fore, careful consideration of these factors is vital to ensure meaningful
and reliable insights into ASD using neuroimaging data [44,67].

7.2.2. EEG
EEG data can be transformed into the frequency domain, allow-

ing for the identification of spectral features that may indicate neu-
ral abnormalities in individuals with ASD [69]. These features can
serve as crucial inputs for classification algorithms [70] Additionally,
connectivity analysis offers insights into how different brain regions
communicate, providing a deeper understanding of neural function-
ing [71]. ML algorithms can process EEG data to analyse connectivity
patterns, and alterations in functional connectivity can be leveraged as
discriminative features for classification [72]. The advantages of using
ML and DL in EEG analysis for ASD include the ability to uncover subtle
neural abnormalities, high temporal resolution, and the potential for
early detection [73]. However, limitations have the need for large and
diverse datasets, challenges in the interpretability of complex neural
patterns, and the potential influence of confounding variables on EEG
signals [74,75]. Careful consideration of these factors is essential for
maximizing the utility of ML and DL techniques in EEG-based ASD
classification [70,77,78].

7.3. Integration of multimodel approach:

Behavioural markers provide real-time, context-rich data, but they
have some limitations, such as subjectivity, context dependence, and
potential masking by individuals with ASD. In contrast, biological
markers, such as MRI/fMRI and EEG, offer objective, neurobiologi-
cal insights, but they can be complex to interpret, costly, and less
accessible.

A multimodal approach combines both behavioural and biologi-
cal markers, taking advantage of their strengths and mitigating their
limitations [79,80]. By integrating these markers, researchers and clin-
icians can create a more comprehensive picture of ASD, enabling
cross-validation and enhancing the robustness of findings [81].

For example, when behavioural markers highlight atypical social
interaction patterns, they can be linked with corresponding neuro-
biological markers from MRI/fMRI or EEG, showing the underlying
neural mechanisms. This can provide a more nuanced understanding
of the condition, addressing the limitations of subjectivity and context
dependence [82]. Additionally, integrating both markers allows for the
early identification of potential neurobiological indicators that may
precede behavioural manifestations, enabling earlier intervention and
support [83].
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Furthermore, a multimodal approach enhances the accuracy and
specificity of ASD diagnosis [84]. By incorporating both behavioural
and biological markers, diagnostic criteria become more comprehensive
and reliable [85]. This not only refines the classification of ASD but
also aids in categorizing subtypes based on distinct behavioural and
neurobiological profiles, leading to more targeted interventions and
personalized support strategies. In summary, a multimodal approach
combines the strengths of both behavioural and biological markers
while compensating for their limitations. This multidimensional under-
standing of ASD enables more accurate diagnoses, earlier intervention,
and more tailored support strategies, ultimately improving the quality
of life for individuals with autism and their families [86]. Collaboration
between experts in both behavioural and biological sciences is essential
for harnessing the full potential of a multimodal approach in ASD
research and clinical practice [87,88].

In summary, the key findings of this investigation include:

1. Early detection and intervention are crucial for improving out-
comes in autistic individuals. AI has the potential to assist in this
endeavour by leveraging a multimodal approach that combines
behavioural and biological markers. This can enhance the accu-
racy and timeliness of diagnoses, allowing for early intervention
strategies tailored to individual needs.

2. AI has the ability to use a diverse range of behavioural and
biological markers to predict and diagnose ASD. The accuracy
of these predictions can vary depending on the data types and
sources used. However, when multiple modalities are integrated,
the strengths of each marker type can compensate for the limita-
tions of the other, providing a more comprehensive assessment
of ASD.

3. Publicly accessible datasets focusing on behavioural and biolog-
ical analyses are invaluable resources for researchers exploring
ASD. These datasets enable the development and validation of AI
algorithms, ensuring that the models are robust and applicable
across diverse populations.

4. AI can offer personalized solutions by analysing individual char-
acteristics, such as behaviour and brain activity. This can en-
hance the development of tailored interventions and support
strategies. The integration of multimodal data allows for the
creation of individualized profiles, guiding the design of inter-
ventions that address specific needs and preferences.

5. AI can simulate the effects of interventions on intricate mental
and behavioural models. This can aid researchers in identify-
ing effective strategies and refining them before clinical trials.
By simulating the impact of interventions in a controlled vir-
tual environment, researchers can optimize treatment plans and
increase their chances of success in real-world applications.

6. This paper offers a comprehensive overview of the current state
of autism research. It encompasses historical perspectives, foun-
dational steps, and the latest AI-driven advancements in the
study of autism. Integrating a multimodal approach is a piv-
otal advancement, offering a more nuanced and personalized
understanding of ASD. This has the potential to revolutionize
interventions and support strategies for individuals with autism
and their families.

8. Limitation of the study

This narrative review aims to identify gaps, inconsistencies, and
potential opportunities in utilizing AI in ASD research. By evaluating
the promising impact of AI, the study seeks to inspire future researchers
to explore its possibilities further. However, it is important to ac-
knowledge that the review process may introduce some subjectivity,
potentially leading to bias in the selection and interpretation of lit-
erature. The review primarily focuses on two modalities: behavioural
20
emotion processing and biological neural activity and connectivity pat-
terns analyse through EEG and MRI/fMRI, aiming to uncover complex
aspects of ASD. The study investigates how individuals with autism per-
ceive, understand, and respond to emotions expressed by others using
behavioural emotion processing. Simultaneously, EEG and MRI/fMRI
are employed to explore neural activity and connectivity patterns in
the brain, potentially identifying biomarkers associated with autism.
EEG records electrical brain activity non-invasively, while MRI/fMRI
generates highly detailed images of brain structure, albeit being more
resource-intensive.

While these modalities are significant in the study of autism, it is
essential to recognize that other dimensions, such as social interactions,
gestures, speech, and genetic factors, can provide valuable insights
into the disorder. Therefore, the review encourages future research
to explore these alternative modalities to harness the full potential
of AI in advancing our understanding of autism. A multi-faceted ap-
proach will pave the way for more effective diagnostic and therapeutic
interventions.

9. Conclusion and future direction

Over the past few years, the research community has shown deep
interest in applying Artificial intelligence techniques in various fields,
especially in the medical field, where early diagnosis is crucial to
addressing disease-related issues. AI techniques can help to understand
complex patterns and identify various factors affecting the disease,
which helps in early detection. This study demonstrates the impact of
AI on autism and its early detection. AI algorithms use behavioural
cues like facial expressions, Eye gaze, and motor skills for pattern
recognition. Meanwhile, biological indicators like EEG and MRI/fMRI
offer more detailed patterns that provide deeper insights into cognitive
and neurological processes. The review is a detailed account of recent
work in this area, including all the modalities in which AI is applied.
The summary tables group data by different modalities, providing
detailed analysis and comparison of recent work. Strengths and limi-
tations are identified, and each modality gives insight into AI usage.
A categorical review aims to identify future research gaps that can
help the researchers plan the work ahead. After compiling a detailed
review, the available datasets and sources facilitate the community to
experiment further. Here are specific directions for DL practitioners to
harness dataset potential and push field boundaries:

1. Embrace Multimodal Approaches with Fusion Methods: While
many studies have predominantly focused on processing RGB
data from images or videos, combining information from mul-
tiple modalities can enhance performance. Researchers should
explore integrating various data types, such as audio, depth, and
sensor data, to achieve more comprehensive insights.

2. Standardize Benchmark Datasets for Reliable Evaluation: To es-
tablish a solid basis for comparison, researchers must adopt
standard benchmark datasets. These datasets will enable con-
sistent evaluation of models’ performance. Existing datasets can
serve as initial foundations for building and evaluating DL mod-
els for specific tasks in computer vision, such as human activity
recognition in individuals with ASD.

3. Address Real-World Scenarios and Unconstrained Environments:
Instead of limiting studies to clinical settings, there is a pressing
need to develop computer vision models that can function ef-
fectively in real-world, uncontrolled environments. This entails
handling diverse lighting conditions, backgrounds, and contex-
tual variations, making models more robust and applicable in
natural settings.

4. Prioritize Longitudinal Studies and Diverse Cohorts: In-depth
research demands longitudinal studies or the inclusion of sub-
stantial cohorts encompassing individuals both with ASD and TD
individuals. Rigorous empirical validation should underpin the
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development of DL systems. These studies will help ascertain
the models’ accuracy, reliability, interpretability, and clinical
viability, ensuring they generalize across various demographic
groups while maintaining fairness and impartiality.

5. Explore Human Factors, User Experience, and Ethical Aspects:
Beyond technical aspects, DL researchers should delve into the
human factors, user experience, and ethical dimensions asso-
ciated with deploying vision-based systems. This exploration
will aid in crafting systems that are technically proficient, user-
friendly, and ethically sound. This will lead to the development
of usable systems that can genuinely complement behavioural
observations in clinical settings.

10. List of abbreviations

ASD Autism Spectrum Disorder

ABA Applied Behaviour Analysis

D Typically Developing

RI Magnetic Resonance Imaging

MRI Functional Magnetic Resonance Imaging

EG Electroencephalogram

VM Support Vector Machine

NN Convolutional Neural Network

BA Applied behaviour Analysis

I Artificial Intelligence

L Deep Learning

L Machine Learning

NN K-Nearest Neighbours

NN Deep Neural Network

NN Recurrent Neural Network

NN Artificial Neural Network

STM Long Short-term Memory

ET Robot Enhance Therapy

HR Electronic health records

DGs Sustainable Development Goals

DDM Autism and Developmental Disabilities Monitoring Network

DC Center for Disease Control

HO World Health Organization

AI eXplainable Artificial Intelligence

SM Diagnostic and Statistical Manual of Mental Disorders
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RPs Event-related potentials
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