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Abstract—Deep learning is increasingly adopted in future 
communication systems to meet requirements within constrained 
resources. End-to-end (E2E) autoencoder models leverage deep 
neural networks for effective communication but often suffer 
from performance degradation due to overfitting. To overcome 
this challenge, we propose the use of a sparse autoencoder 
(SAE). The SAE captures essential features by enforcing sparsity, 
enhancing model generalization. Building on this approach, 
we propose an SAE-based E2E communication system model 
designed for M-ary Phase Shift Keying (MPSK) and M-ary 
Quadrature Amplitude Modulation (MQAM) constellations over 
an Additive White Gaussian Noise (AWGN) channel. We train the 
SAE under varying signal-to-noise ratios (SNRs) and evaluate its 
Block Error Rate (BLER) versus testing SNR performance. Re-
sults show improved BLER at lower training SNRs, as the model 
better learns noise behavior. The proposed system outperforms a 
conventional BPSK system using maximum likelihood detection 
and a baseline E2E autoencoder, demonstrating the effectiveness 
of sparsity constraints. Additionally, we assess its performance 
considering model loss function, further validating its robustness.

Keywords—deep learning, sparse autoencoder, end-to-end 
communication, overfitting.

I. INTRODUCTION

Deep Learning (DL) has emerged as a transformative
approach in artificial i ntelligence, d emonstrating remarkable
capabilities in solving complex problems once considered
unattainable. Its ability to automatically learn intricate patterns
from large datasets has driven significant a dvancements in
diverse fields, i ncluding c omputer v ision, a utonomous sys-
tems, healthcare, and communication systems. It holds the
potential to revolutionize the way we design, optimize, and
operate communication systems [1]. By leveraging neural
networks (NNs) and data-driven approaches, DL techniques
have shown remarkable promise in enhancing various aspects
of communication systems, such as modulation, demodulation,
channel decoding, signal processing, and many more [2].

Conventional communication systems, while well-
established and robust, often rely on manually designed rules
and strategies that may not fully exploit the complexities of
real-world communication environments [3]. In contrast, DL

offers a data-driven approach capable of learning intricate
patterns, adapting to dynamic conditions, and enhancing
system performance through data analysis. Beyond improving
traditional communication blocks, DL introduces a new
paradigm for future systems, where features and parameters
are learned directly from data without manual or ad-hoc
intervention, using an end-to-end (E2E) loss function.

Inspired by this methodology, E2E learning-based commu-
nication system was introduced in [4], where both the trans-
mitter and receiver are represented by deep NNs, interpreted
as autoencoders (AEs). The study demonstrated comparable
performance to traditional communication systems; however,
the input data used had a restricted bit length. This constraint
was later addressed by [5] and [6]. The work in [5] leveraged
a convolutional NN-based AE with enhanced generalization
capabilities, allowing support for arbitrary input bit lengths.
Despite this advancement, their loss curve exhibited oscilla-
tory behavior, indicating potential instability in the training
of an overly complex model. Conversely, [6] introduced a
conditional generative adversarial network (GAN) to manage
dimensionality issues in long transmit symbol sequences.
While their model demonstrated stable training, the use of
a GAN as a channel model introduced added complexity
due to its deep architecture. To mitigate this complexity, [7]
proposed a compression algorithm that pruned less significant
weight coefficients during training. This approach effectively
reduced model complexity; however, it led to performance
degradation at high SNR levels. In [8], a residual AE with a
convolutional block attention scheme was used at the decoder
to extract fine-grained features for noise reduction. The models
in [4]-[8] achieve comparable performance to the conventional
communication systems, while [9] showed a performance gain
over conventional systems using a fully differentiable neural
iterative demapping and decoding AE structure. However, their
achieved gain is minimal. All these models employ complex
NN architecture using multiple layers.

As NNs grow in complexity and size, they become more
prone to overfitting i.e. excelling at training data but struggling
to generalize to unseen data, thus limiting their flexibility and



adaptability. To mitigate this, extensive research has explored
regularization techniques to enhance robustness and general-
ization in NNs. In [10], overfitting analysis for transmission
systems over an AWGN channel was demonstrated, showing
improved performance with regularization. However, in sce-
narios with limited training data or noisy input, basic AEs with
regularization may still struggle to extract relevant features,
as regularization penalties on weights do not necessarily
prioritize the most informative aspects of the data.

To combat overfitting, various regularization techniques
have been explored [11]. Dropout, as applied in [12], enhances
NN adaptability by probabilistically removing neurons, while
data augmentation in [13] reduces overfitting by expanding
the training set without adding new information. One such
regularization technique gaining prominence is the sparse au-
toencoder (SAE) [14], known for capturing essential features
and reducing data dimensionality [15]. SAEs enforce sparsity
constraints on neuron activations, encouraging the network to
learn more concise and informative representations of the input
data. The key contributions of this research are outlined below
to highlight the significance of the proposed approach:

• We propose a DL-based E2E communication system over
an AWGN channel to addresses the challenge of overfit-
ting by applying an SAE as a regularization technique.

• We design and present the algorithm to describe the
functionality and training process of the SAE.

• We evaluate the system performance using Block Error
Rate (BLER) versus average SNR (Eb/N0) to assess
reliable communication under different noise levels.

• We compare the performance of the proposed model with
conventional M -PSK and M -QAM systems employing
maximum likelihood detection (MLD), highlighting the
advantages in various modulation scenarios.

• We benchmark the proposed model against an existing
AE-based system to demonstrate its performance gains.

• We demonstrate the effectiveness of the proposed model
in enhancing the performance of E2E communication
systems with M -PSK and M -QAM modulations across
different training SNR conditions.

The rest of the paper’s organization is as follows: Section II
presents the conventional AWGN communication model along
with its equivalent DL-based E2E communication system
model. In Section III, the simulation results of the proposed
SAE-based system are presented using BLER. Finally, we
conclude the paper in Section IV.

II. SYSTEM MODEL

This section presents the AE-based communication system
and explains the functionalities of a basic AE and SAE. The
training process of SAE has also been explained in detail.

A. Autoencoder Based End-to-End Communication System

A conventional communication system with AWGN channel
[3], shown in Fig. 1, can be modeled as y = s+w, where y, s,
and w represent the symbols of the received signal, transmitted
signal, and additive white Gaussian noise, respectively. The
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Fig. 2. Representation of an Autoencoder as a communication system model

energy of s is Eb and the power spectral density of w is No.
The system coding rate is defined as R = k/N [bit/channel
use], where N is the number of channel uses, k = log2(M),
and M is the number of possible messages being transmitted
for the MPSK system. The goal of the transmitter is to send
a single message from a set of M possible messages, repre-
sented as d ∈ M = {1, 2, ...,M}, over an AWGN channel
to the receiver using N discrete channel transmissions. To
accomplish this, the transmitter encodes d into a transmitted
signal s ∈ RN . The channel behavior is characterized by
the conditional probability density function p(y|s). At the
receiver, the received noisy signal is processed to obtain
the estimated message d̂. The performance of the system is
assessed using the BLER, defined as Pr(d̂ ̸= d).

We have modeled this conventional communication system
as an SAE-based E2E communication system. The encoder
corresponds to the transmitter, with its input being the data
to be transmitted. The encoder component of the SAE com-
presses this input into a lower-dimensional representation,
aiming to capture essential information while discarding less
relevant details. To counter channel noise effects, a receiver is
represented by a decoder. The decoder reconstructs the original
data from the received signal. The SAE is trained to encode the
input data efficiently for transmission and decode the received
data to reconstruct the original input. The reconstruction is
done by adjusting the parameters during training to minimize
the difference between input and output data.

Fig. 2 shows the representation of an AE as a communica-
tion system model. Encoder (f), which acts as a transmitter,
compresses the input data d into a latent space representation
(channel) h, represented by an encoding function h=f(d)
[14]. Decoder (g), acting as a receiver, reconstructs the input
from the latent space representation, defined by the decoding
function d̂ = g(h). Consequently, the overall AE operation
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Fig. 3. Workflow of Proposed Sparse Autoencoder Model

can be expressed as d̂ = g(f(d)), where the objective is to
make g(f(d)) as close as possible to the original input d.
Training a basic AE involves minimizing the reconstruction
error, which quantifies how well the model can reconstruct
the input data. The reconstruction error [14] for a basic AE
is given by L(d, d̂). AEs suffer from overfitting when the
model learns to fit the training data too closely, capturing
even the noise and minor variations present in the dataset. As a
result, the model performs well on the training data but poorly
on unseen data due to limited generalization. Regularization
techniques are used in NNs to prevent overfitting [10]. We use
an SAE [14] which is a type of regularized AE.

B. Sparse Autoencoder Training

Unlike a basic AE, an SAE learns only the most important
features of its input. The SAE’s loss function promotes spar-
sity and feature selectivity alongside reconstruction. Sparsity
ensures that only a few neurons in a layer are activated,
enhancing generalization, critical for communication system
applications. By incorporating SAE, the model can capture key
communication features such as modulation schemes, phase
variations in MPSK models, and SNR.

We propose an SAE-based E2E communication system
model, where the SAE introduces a sparsity constraint, i.e.
a sparsity penalty term Ω(h) in the hidden layer h. Thus, for
the proposed SAE model, the reconstruction error becomes

L(d, d̂) + Ω(h) (1)

The sparsity penalty term promotes sparsity in h. The
reconstruction error quantifies the difference between the input
d and the reconstructed output d̂. Eq. (1) shows how sparsity
is encouraged in the latent representation h within the SAE
framework. However, in our proposed SAE-based model,
the regularization approach is designed to enforce sparsity
specifically in the normalization layer, significantly influencing
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Fig. 4. Proposed Sparse Autoencoder based communication system model
with AWGN channel

the latent representation structure. To incorporate the sparsity
penalty into the loss function, we utilize L1 regularization [14].
This regularization technique promotes sparsity by penalizing
nonzero activations, ensuring only a few neurons are active.
The network minimizes the L1 regularization term along
with the reconstruction error during training, helping mitigate
overfitting and handle noisy datasets effectively. In the SAE
framework, the forward pass, where input data propagates
through network layers to generate a prediction or output, is
expressed as

h = f(Wd+ b), (2)

where f(·) represents the activation function, while W , d and
b correspond to the weight matrix, input, and bias term, re-
spectively. This computation is performed iteratively for each
layer, starting from the input layer and proceeding through
hidden layers until reaching the output layer.

The SAE workflow, illustrated in Fig. 3, consists of two
main phases: training and testing. During the training phase,
SAE learns from a dataset of encoded symbols. In the testing
phase, the trained SAE is evaluated using a separate test-
ing dataset to measure its performance. Fig. 4 shows the
proposed SAE-based communication system architecture over
an AWGN channel. The input data are generated as random
binary data d, encoded into a one-hot vector 1d ∈ RM (an
M -dimensional vector), the dth element of which is equal to
one and zero otherwise [4]. This one-hot vector creates the
actual input data for training. The transmitter maps d into N
numbers using two fully connected (FC) layers with ReLU
and linear activation functions [14], performing nonlinear
and linear transformations for encoding and modulation. The
normalization layer normalizes the output of the last FC layer
to constrain the signal energy within the fixed value N . The
L1 regularization is applied to neurons from the normalization
layer for sparsity constraint. The channel is modeled as an
additive noise layer with fixed variance β = (N0/2REb). The
decoder corresponds to the receiver. The received signals are
processed by two FC layers with ReLU and softmax activation
[14]. The AE is trained iteratively using categorical cross-
entropy loss and Adam optimizer [14]. The loss function
measures the difference between the estimated message d̂



and the target input d. A probability vector, representing the
probabilities over all possible messages, is reconstructed to
restore the original data. At last, the estimated message d̂
can be obtained by selecting the largest element index of the
probability vector. The AE can then be trained end-to-end on
the set of all possible messages d ∈ M using the loss function.

Algorithm 1 SAE Training
Input:

• Training dataset d
• SAE architecture: Encoder f and Decoder g.
• Hyperparameters: learning rate (α), number of epochs

(N epoch), number of training iterations per epoch
(N iter), L1 regularization strength (λ), and loss func-
tion L.

Initialization:
• Random initial AE parameters θf and θg .
• Epoch counter: epoch = 0.

Training Loop:

for N epoch do:
1: Shuffle d randomly.
2: total loss = 0.
3: total l1 reg = 0.
4: for N iter do:

a: Batch selection: d batch from d
b: z batch = f(d batch;θf )
c: d̂ batch = g(z batch;θg)
d: loss batch = L(d batch, d̂ batch)
e: l1 reg batch = λ ·

∑
i |(θf )i|

f: total loss+ = loss batch
g: total l1 reg+ = l1 reg batch

end for
5: avg loss = total loss/N iter
6: avg l1 reg = total l1 reg/N iter
7: Output: avg loss and avg l1 reg term for current epoch.
8: Total loss for current epoch: total loss with l1 =

avg loss+ avg l1 reg
9: Gradients computation of total loss with respect to f and

g parameters: ∇θf total loss with l1,∇θfavg loss
10: Parameter update using gradient descent:

θf = θf − α · (∇θf total loss with l1 + λ · sign(θf ))
θg = θg − α · ∇θgavg loss

end for
Output: Trained SAE parameters: θf and θg .

Algorithm 1 outlines the training process of the SAE. The
term N iter is depends on the batch size and training data,
while θ denotes the trainable parameters (W and b) of a
fully connected layer. To enforce sparsity, L1 regularization is
applied to each batch size by scaling the encoder parameters
θf with λ, reducing the magnitude of larger parameter values.
In step 4.e, i represents the index iterating over the individual
elements in θ. By iteratively refining the SAE parameters θf
and θg , the model seeks to minimize the overall loss function

and improve data reconstruction. In SAEs, inducing sparsity in
the learned representations is a key objective. Step 10 reflects
this objective by updating the encoder θf parameters with an
added term that encourages sparsity. The term λ ·sign(θf ) acts
as a sparsity-inducing penalty. This encourages a large portion
of the encoder parameters to become zero, yielding a sparse
representation. Once the SAE is trained, the trained model can
be evaluated on unseen testing data to assess its performance.
The simulation results are presented in Section III.

III. SYSTEM PERFORMANCE

A. Simulation Setup
This section presents simulations of the proposed SAE-

based model. BLER is used as the performance metric during
evaluation and testing. The training dataset consists of 16,000
independently and identically distributed integer samples, with
separate datasets for training and testing to ensure distinct
noise realizations. A 20% split of the training dataset is
reserved for validation. Table I outlines the proposed SAE
model structure. The output dimensions indicate the number of
neurons in each layer. The modulation learning process begins
in the third layer, where the output dimension is reduced to
N = 1 for effective feature learning. After the noise layer,
the output dimension is restored to M at the decoder. The
values of M and N are chosen based on different M -PSK
and M -QAM systems, with the coding rate R set to 1.

TABLE I
AUTOENCODER MODEL LAYOUT

Layer Output Dimensions
Input M

FC + ReLU M
FC + Linear N

Normalization N
Noise N

FC + ReLU M
FC + Softmax M

TABLE II
HYPERPARAMETERS USED FOR TRAINING

Hyperparameter Value
Learning rate 0.001

Number of epochs 100
L1 regularization strength 0.01

Batch size 64
Optimizer Adam

Loss function Categorical
Crossentropy

Table II provides all hyperparameters used in training the
proposed model. All the values were chosen to ensure effective
training convergence and performance of the proposed model.
The L1 regularization strength (λ) was set to 0.01 to maintain a
balanced trade-off between sparsity and reconstruction quality.
Lower values (e.g., 0.005), reduced sparsity and increased the
risk of overfitting, while higher values (e.g., 0.02) imposed
excessive sparsity, leading to degraded performance.



Fig. 5. BLER versus testing SNR performance of BPSK SAE-based system
with AWGN channel at different training SNRs.

Fig. 6. BLER vs. testing SNR over AWGN channel for BPSK.

B. Result Analysis

In Fig. 5, BLER versus testing average SNR of the proposed
system for BPSK (M = 2) is shown for training SNRs of
7, 12, 16, and 19 dB. The proposed system performs better at
lower training SNRs, as training at lower SNR levels enhances
generalization and robustness against overfitting, improving
performance on unseen data. However, this trend is evident
only within the 7 to 19 dB range, with minimal change
beyond this interval. We also compare the BLER performance
conventional BPSK system in an AWGN channel using MLD,
shown as BPSK MLD. The proposed system trained at 19 dB
matches conventional BPSK, while lower training SNRs yield
better performance. At 10−3 BLER, training at 7 dB provides
a 2.5 dB SNR gain over conventional BPSK.

In Fig. 6, BLER versus testing SNR in AWGN is shown
for the proposed system trained at 4 dB, compared with the
conventional BPSK system. As discussed earlier, the proposed
system outperforms the conventional one. We also include
the BLER performance of the Baseline AE model [9], which
lacks overfitting mitigation and performs optimally at 4 dB
training SNR. The Baseline AE closely follows conventional
BPSK across a wide SNR range, while the proposed system
consistently outperforms the Baseline AE for all M values. At
10−3 BLER, the proposed model achieves approximately a 2
dB SNR gain over the Baseline AE, demonstrating the ability
of SAE to capture essential features and mitigate overfitting.

Fig. 7 compares BLER versus testing SNR for the proposed
SAE and conventional MLD models for M = 2, 4, 8, 16

Fig. 7. BLER vs. testing SNR for the proposed SAE and the conventional
MLD model for MPSK system, trained at an SNR of 7 dB.

Fig. 8. BLER vs. testing SNR for the proposed SAE and the conventional
MLD model for MQAM system, trained at an SNR of 7 dB.

in MPSK. In the conventional system, BLER performance
degrades in AWGN for MPSK as M increases. A similar trend
is observed in the proposed SAE system, which outperforms
the conventional model for all M values.

TABLE III
GAIN OVER MLD SYSTEM AT 10−3 BLER

Values of M Baseline AE Proposed AE
2 0.3 dB 2.2 dB
4 0.4 dB 2.3 dB
6 0.7 dB 2.5 dB
8 0.8 dB 2.5 dB

Table III shows the SNR gain at 10−3 BLER, where
the Baseline AE achieves a maximum gain of 0.8 dB for
8PSK, while the proposed model achieves up to 2.5 dB.
Fig. 8 presents a similar comparison for MQAM, confirming
the proposed SAE consistently outperforms the conventional
system for all M values. Next, we analyze BLER versus
training SNR at fixed testing SNR.

Fig. 9 illustrates this for BPSK at testing SNRs of 2, 4, 6, 8
dB. As expected, for a given testing SNR (e.g., 6 dB), BLER
degrades with increasing training SNR, with a sharper decline
at higher training SNRs, such as 8 dB. Fig. 10 shows the
model loss curve for the proposed SAE system, illustrating



Fig. 9. BLER vs. training SNR for SAE-based BPSK at various testing SNRs.

Fig. 10. Loss Curve of the Proposed SAE-Based System

its performance throughout training. Training loss reflects the
model’s ability to fit the training data, while validation (test)
loss measures its generalization to unseen data. The curve,
plotted over 100 epochs, shows a smooth and steady decline
in training and validation loss, indicating effective learning and
a stable training process, leading to improved performance of
the proposed SAE system.

IV. CONCLUSION

End-to-end AE models often suffer from overfitting due to
their complex structures. The proposed SAE-based model mit-
igates this issue by enhancing generalization, and improving
performance. The model is trained using different SNR levels,
achieving the best results at 7 dB training SNR. For BPSK,
it offers a gain of about 2.5 dB over the conventional MLD
approach. A comprehensive evaluation of MPSK and MQAM
modulation schemes confirms the effectiveness of SAE in fea-
ture extraction and overfitting prevention. The proposed work
advances efforts toward more efficient E2E communication
systems. Future research can extend the SAE-based model
to MIMO systems by adapting the encoder–decoder structure
to support multiple antennas and integrating spatial encoding
layers. The channel model can be expanded to include MIMO
fading matrices, while training strategies can incorporate var-
ious antenna correlation and channel conditions. Advanced
channels, like frequency-selective or time-varying fading, can
be addressed by integrating memory-based modules such as
attention mechanisms to improve robustness.
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