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This paper presents a hybrid deep learning framework that integrates a Generative Adversarial Network (GAN) 
with an Attention-based Sparse Autoencoder (GAN-AAE) for end-to-end wireless communication over Rayleigh 
fading channels with imperfect channel state information at the receiver (CSIR). Traditional autoencoder models 
lack the ability to learn underlying signal distributions or correct distortions caused by fading and noise. The 
proposed GAN-AAE addresses these limitations by using a generator as a learnable channel surrogate to refine 
encoded signals and an attention mechanism to dynamically prioritize relevant features for improved decoding. 
The imperfection in the CSI is quantified by a correlation coefficient 𝜌, where 0 ≤ 𝜌 ≤ 1. Perfect channel knowl-
edge is denoted by 𝜌 = 1, and decreasing values of 𝜌 correspond to increasingly inaccurate CSIR. The model is 
jointly trained using adversarial and reconstruction losses to enhance its adaptability. Simulation results show 
that the GAN-AAE framework significantly outperforms conventional Maximum Likelihood Detection and base-
line deep and convolutional neural network-based models in terms of bit error rate (BER). The model is evaluated 
over 𝑀-ary phase shift keying (𝑀-PSK) and 𝑀-ary Quadrature Amplitude Modulation (𝑀-QAM) with Rayleigh 
fading channel. At 𝜌 = 0.9 and a signal-to-noise ratio (SNR) of 10dB, the conventional baseline model achieves 
a BER of 0.072, whereas the proposed GAN-AAE achieves a lower BER of 0.02404 for Binary phase shift keying 
(BPSK). A complexity analysis indicates that although the GAN-AAE model introduces some additional compu-
tational overhead, the performance gains in reconstruction justify the trade-off. Overall, the GAN-AAE offers a 
resilient and adaptive solution for end-to-end communication under realistic wireless impairments.

1.  Introduction

Modern communication systems are typically built using a block-
wise structure, where each function, such as source coding, channel en-
coding, modulation, and decoding, is designed independently [1]. While 
this traditional approach is systematic and facilitates modular develop-
ment and analysis, it may limit the overall system performance due to 
the lack of joint adaptation among components. In several studies, deep-
learning-based communication models have demonstrated superior per-
formance compared to conventional theoretical detection schemes by 
leveraging diverse training approaches and adaptive learning strategies 
under challenging channel conditions [2–6], highlighting the strong po-
tential of deep-learning models to achieve high performance in wireless 
environments. In such scenarios, deep models learn an effective deci-
sion rule matched to the actual observed distribution, while analytical 
detectors remain tied to idealized mathematical assumptions. With the 
advancement of deep learning techniques, end-to-end communication 
system design using neural networks has emerged as a promising alter-
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native [7]. In these systems, the transmitter and receiver are modeled 
as trainable neural networks and are trained together to learn an effec-
tive communication strategy directly from data, without relying on the 
conventional modular design.

However, while end-to-end learning-based systems offer a unified 
framework, their practical deployment faces challenges. In real-world 
scenarios, channel conditions are far from ideal, and perfect knowl-
edge of channel state information (CSI) at the receiver is often unavail-
able. Although many early end-to-end learning frameworks assume per-
fect CSI to simplify system modeling and learning [8–11], this assump-
tion is impractical in wireless environments. Obtaining accurate CSI in 
time-varying channels, especially under Rayleigh fading, requires sig-
nificant overhead and is prone to estimation errors [12]. Therefore, 
incorporating imperfect CSI into the system model is crucial to devel-
oping robust and deployable end-to-end learning-based communication
solutions.

Within this paradigm, autoencoders (AEs) [13] have been widely 
explored as a neural network architecture for modeling end-to-end
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Table 1 
Summary of GAN applications in data-driven communication modeling.
 Ref  Type of Neural Network Contribution Key Findings Limitations

 [19]  Basic GAN Proposed a GAN framework to repli-
cate AWGN channel characteristics with-
out theoretical modeling.

Demonstrated GAN’s potential for flexible, 
generalized channel modeling.

Lacks comparison with classical models; 
limited to AWGN scenarios.

 [20]  SEGAN (Self-Attention GAN) Designed a SEGAN model integrating self-
attention for improved temporal feature 
extraction.

Improved speech enhancement with low 
memory overhead at selective layers.

Increased training complexity when atten-
tion spans multiple layers.

 [21]  GAN for Data Augmentation Employed GANs for data augmentation to 
improve signal classification under limited 
data.

Enhanced accuracy under data-scarce set-
tings using synthetic samples.

Model performance relies heavily on initial 
dataset quality.

 [22]  Conditional GAN (cGAN) Developed a GAN model for joint 
frequency-domain channel statistics 
at mmWave/THz.

Captured complex cross-frequency channel 
behavior.

Limited generalization due to reliance on 
ray tracing simulations.

 [23]  Image-to-Image GAN Used GAN for reconstructing images from 
semantic maps to reduce bandwidth.

Maintained quality under distortion with 
reduced transmission load.

GAN at receiver adds heavy computation; 
not suited for constrained devices.

 [24]  Restoration GAN Proposed GANs for restoring wireless data 
loss without retransmissions.

Achieved over 90% restoration in various 
loss scenarios.

Sensitive to bias and distribution of train-
ing data.

 [25]  Multiple GAN types Surveyed GAN applications in wireless, in-
cluding channel modeling, data augmenta-
tion, and security.

Emphasized adaptability of GAN to various 
wireless tasks.

Unstable training and complex hyperpa-
rameter tuning remain major barriers.

communication systems due to their ability to learn compressed rep-
resentations of data and reconstruct them at the receiver. While effec-
tive, standard AEs often suffer from overfitting [14] and poor gener-
alization. To mitigate this, the use of sparse AEs [15] has gained trac-
tion. By enforcing sparsity in the latent space, sparse AEs promote the 
learning of more compact and informative features. However, sparsity 
alone may not be sufficient to capture the variability introduced by un-
certain or rapidly changing wireless channels. To address this limita-
tion, attention mechanisms have emerged as a promising approach to 
further refine the feature extraction process [16]. These mechanisms 
enable the model to focus on the most relevant parts of the input sig-
nal during encoding and decoding, effectively prioritizing the transmis-
sion of critical information. However, several limitations hinder the ef-
fectiveness of the attention mechanism with an autoencoder in real-
world fading scenarios. First, attention-based autoencoders primarily 
enhance feature selection but do not learn the underlying distribution of 
the transmitted signal, limiting their ability to handle unseen or highly 
perturbed inputs. Second, current architectures lack an internal correc-
tion or feedback mechanism that can compensate for inconsistencies 
in the received signal caused by noise, fading, or imperfect CSI. This 
leads to limited reconstruction capability of the decoder under rapidly 
varying or unpredictable channel conditions. Additionally, these mod-
els fail to dynamically adapt to fluctuations in the signal due to im-
perfect CSI, as they do not explicitly model uncertainty in the received
data.

These limitations highlight the need for an enhanced mechanism 
that can model complex signal distributions and refine distorted re-
ceived signals. This study focuses on addressing the challenges of signal 
degradation under fading environments with imperfect channel knowl-
edge. To this end, we explore the integration of Generative Adversarial 
Networks (GANs) [17] into an attention-augmented sparse autoencoder 
framework for end-to-end communication. GANs are particularly effec-
tive in learning complex data distributions and have demonstrated suc-
cess in refining outputs in various domains, making them well-suited for 
enhancing signal reconstruction in uncertain wireless channels. Recent 
studies have also explored GAN and ResNet-based architectures for wire-
less end-to-end communication design [18], demonstrating the growing 
applicability of adversarial techniques in this domain. By leveraging the 
generative capability of GANs alongside the selective feature extraction 
of attention mechanisms and the compact representation of sparse au-
toencoders, this work aims to develop a more resilient and adaptive 
communication model capable of operating effectively under practical, 
imperfect CSI conditions.

1.1.  Related works

The application of GANs in wireless communication has attracted 
considerable attention due to their capacity to model complex data dis-
tributions and learn robust generative mappings without requiring ex-
plicit analytical formulations. Early attempts, such as in [19], employed 
a GAN-based framework for wireless channel modeling, showing that 
data-driven generative approaches could approximate statistical prop-
erties of traditional channel models like additive white Gaussian noise 
(AWGN) without complex theoretical derivations. However, these works 
were mostly confined to simplified channel conditions and lacked quan-
titative benchmarking against classical models. Subsequent efforts ex-
tended GAN to tasks beyond channel modeling. In Phan et al. [20], a 
Self-Attention GAN was introduced for speech enhancement, demon-
strating the importance of integrating attention mechanisms to cap-
ture long-term dependencies in sequential data. While effective, this 
method incurred additional training overhead. Other studies, like Tang 
et al. [21], applied GAN for data augmentation in modulation classifica-
tion, achieving notable gains under limited training data. However, the 
dependence on the quantity and diversity of original data posed gener-
alization challenges. In the context of high-frequency communications, 
[22] proposed a GAN-based framework for modeling multi-frequency 
THz channels. Their model captured joint frequency-domain character-
istics more accurately than traditional approaches. However, it relied 
heavily on ray tracing data, which might not generalize well to real-
world conditions. Similarly, [23] used a pre-trained GAN for image re-
construction in semantic communication systems, illustrating GAN‘s po-
tential to reduce bandwidth usage. Still, the computational demands at 
the receiver limited its applicability in edge devices. GANs have also 
been applied to wireless time-series restoration, as in Han and Na[24], 
showing high recovery rates for lost data. Nonetheless, the results were 
sensitive to training data quality. A broader review in [25] summarized 
these applications, reinforcing the versatility of GANs for wireless sys-
tems while cautioning about their training instability and high sensitiv-
ity to hyperparameter tuning. An organized summary of these research 
studies is shown in Table 1. In addition to these developments, recent 
studies have explored GAN architectures for various physical-layer wire-
less tasks. For example, GANs have been used for adaptive modulation 
and coding in next-generation 5G communication systems [26], and 
for enhancing received signal waveforms in fading environments [27]. 
GANs have also been applied for wireless channel data generation and 
modeling to improve training efficiency when channel measurements 
are limited [28].
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Learning from the diverse applications of GANs across different neu-
ral network architectures in communication systems, we observed key 
advantages, including the effectiveness of using pre-trained GANs for 
enhanced signal reconstruction, the ability of attention mechanisms to 
selectively emphasize critical features, and the integration of GANs to 
compensate for data loss or channel distortion. These studies highlight 
the potential of GANs not only as standalone generative models but also 
as complementary modules within structured neural architectures. How-
ever, their practical deployment is often challenged by unstable train-
ing dynamics, sensitivity to hyperparameters, and dependence on large, 
high-quality datasets. These limitations can significantly impact the per-
formance and generalization capability of communication models under 
real-world conditions, particularly in scenarios involving Rayleigh fad-
ing and imperfect CSI. To mitigate such instability, our design incorpo-
rates several stabilizing choices, including a controlled 1:1 generator-
discriminator update schedule, small-step Adam optimization, and the 
use of a pre-trained generator structure that suppresses early-stage ad-
versarial imbalance and reduces the risk of mode collapse. Motivated 
by these insights, our proposed model is designed to combine the gen-
erative strength of GANs with the sparsity and feature prioritization of 
attention-augmented autoencoders, while accounting for training sta-
bility, data efficiency, and robust signal recovery under imperfect CSI 
environments.

1.2.  Main contributions

This study contributes to the advancement of deep learning-based 
communication systems by proposing a hybrid framework. The key con-
tributions are as follows:

◦ We propose a hybrid GAN-AAE model, which integrates GAN within 
an attention-based sparse autoencoder for end-to-end wireless com-
munication under Rayleigh fading with imperfect CSI.

◦ The training process of the proposed GAN-AAE is presented through 
an algorithm that enables coordinated interaction between the 
encoder-decoder path and the GAN components, allowing the model 
to learn effectively under channel uncertainty while incorporating a 
stability-aware GAN training strategy to ensure reliable adversarial 
behaviour within the hybrid architecture.

◦ To evaluate the effectiveness of the proposed framework, its perfor-
mance is assessed using Bit Error Rate (BER) versus average signal-
to-noise ratio (SNR) on 𝑀-PSK and 𝑀-QAM modulated Rayleigh fad-
ing channel under imperfect CSIR.

◦ We compare the performance of the proposed model against three 
benchmarks: a conventional Maximum Likelihood Detection (MLD) 
system, a baseline end-to-end AE model with Deep neural network 
(DNN)-based-channel module [29] and a baseline convolutional neu-
ral network (CNN)-based end-to-end AE model [30] under similar 
imperfect CSI conditions.

◦ We also compare the performance of the proposed model with all 
baseline models under perfect CSIR (𝜌 = 1) to quantify the gap be-
tween ideal channel knowledge and practical uncertainty.

◦ Through simulation results, we demonstrate improved robustness 
and signal reconstruction quality, showing that the proposed GAN-
AAE model achieves lower error rates and better generalization 
in unpredictable channel scenarios. We also provide a complexity 
analysis to quantify the resulting performance-complexity trade-off 
across models.

The remainder of the paper is organized as follows: Section 2 
presents the system model, including the detailed working of the pro-
posed GAN-AAE architecture. Section 3 discusses the performance eval-
uation of the proposed system through simulation results. Finally, Sec-
tion 4 concludes the article with key observations and potential future 
directions.

Fig. 1. Basic working principle of a generative adversarial network (GAN).

2.  System model

This section presents a GAN-Attention-based end-to-end sparse au-
toencoder communication system model (GAN-AAE) for a Rayleigh fad-
ing channel with imperfect channel state information at the receiver 
(CSIR).

From a set of 𝑀 possible messages, the transmitter selects a mes-
sage 𝑑 ∈  = {1, 2,… ,𝑀}. The message is transmitted over 𝑛 channel 
uses, with 𝑛 = 𝑘. Each message 𝑑 is expressed as a 𝑘-bit binary vector 
with 𝑘 = log2(𝑀). This 𝑘-bit message is mapped to a modulated chan-
nel input vector 𝐬 = [ 𝑠1,… , 𝑠𝑛 ]𝖳, where each 𝑠𝑖 is drawn from the set 
of symbols in an 𝑀-ary constellation. The received signal is modeled 
as 𝐲 = ℎ𝐬 + 𝐰, where ℎ ∼  (0, 1) denotes the complex Gaussian chan-
nel coefficient, considered constant across the 𝑛 channel uses, under 
the flat fading time-invariant channel model with a single-input single-
output link. The additive white Gaussian noise (AWGN) is represented 
as 𝐰 = [𝑤1,… , 𝑤𝑛 ]𝖳 where 𝑤𝑖 ∼  (0, 𝜎2), and the variance is given 
by 𝜎2 = (2𝐸𝑏∕𝑁0)−1. Here, 𝐸𝑏∕𝑁0 denotes the ratio of energy per bit to 
noise power spectral density. The system operates under practical con-
ditions where perfect CSI is not available at the receiver. Instead, the 
receiver accesses CSIR ℎ̂, modeled as:
ℎ̂ = 𝜌ℎ +

√

1 − 𝜌2 𝛿, (1)

where 𝜌 denotes the correlation coefficient ranging between 0 and 1, 
and 𝛿 ∼  (0, 1) is independent complex Gaussian noise. The decoder, 
based on attention-based sparse autoencoder structure, jointly processes 
the GAN-refined signal 𝒚gen and the imperfect channel information ℎ̂ to 
learn a compact latent representation and reconstruct the transmitted 
message 𝑑. The system’s performance is measured using bit error rate 
(BER), representing the fraction of incorrectly decoded bits. BER is com-
puted by converting 𝑑 and 𝑑 to their 𝑘-bit binary forms and measuring 
the bit-wise error rate.

2.1.  GAN overview

To improve the overall signal reconstruction under channel uncer-
tainty, GAN is integrated into an autoencoder-based framework as a 
learnable surrogate for the wireless channel. Fig. 1 illustrates the work-
ing principle of a conventional GAN, agnostic to the communication 
system model. It consists of two neural networks: a generator 𝐺 and a 
discriminator 𝐷. The generator learns to produce samples that mimic 
the actual distribution of the received signals, while the discriminator 
attempts to distinguish between the actual data samples and those gen-
erated by 𝐺. Here, the term actual refers to the known or reference 
data used for training. During adversarial training, 𝐺 is optimized to 
generate outputs that can fool the discriminator into classifying them 
as real, while 𝐷 is trained to correctly identify actual versus generated 
(synthetic) signals. This adversarial learning mechanism is expressed 
through a minimax objective function [13] with the following value 
function:

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = 𝔼𝒙∼𝑝actual [log𝐷(𝒙)]

+ 𝔼𝒛∼𝑝(𝒛)[log(1 −𝐷(𝐺(𝒛)))], (2)

where 𝒙 corresponds to the actual data samples, which serve as the input 
to the discriminator. The term 𝑝actual denotes the empirical probability 
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Fig. 2. Workflow of the proposed GAN-AAE model.

distribution of the actual samples. It describes how these samples are dis-
tributed within the input data space presented to the discriminator. The 
term 𝒙 ∼ 𝑝actual denotes that the actual samples 𝒙 are drawn from the 
distribution 𝑝actual. Additionally, 𝒛 is a random input vector that serves 
as the initial input to the generator. It is sampled from a predefined 
probability distribution 𝑝(𝒛), typically a standard normal or a uniform 
distribution. This distribution provides a structured but random input 
space from which the generator learns to produce realistic samples. The 
output of the generator is denoted by 𝐺(𝒛), which is a synthetic sam-
ple produced to resemble the actual data. The term 𝐷(𝒙) represents the 
output of the discriminator when it receives an actual sample 𝒙. On the 
other hand, 𝐷(𝐺(𝒛)) represents the output of the discriminator when it 
is presented with a generated sample 𝐺(𝒛). The term 𝔼𝒙∼𝑝actual [log𝐷(𝒙)]
represents the average log-probability that the discriminator correctly 
identifies actual data samples. Meanwhile 𝔼𝒛∼𝑝(𝒛)[log(1 −𝐷(𝐺(𝒛)))] rep-
resents the average log-probability that the discriminator correctly iden-
tifies generated samples. The training process follows a two-player mini-
max game defined by the objective function in Eq. (2). In this adversarial 
setup, the discriminator 𝐷 aims to maximize the value of the objective 
function and the generator 𝐺 attempts to minimize it. The discrimina-
tor is trained to maximize its ability to distinguish actual signals from 
generated ones using the following loss function:
𝐷 = −𝔼𝒙∼𝑝actual [log𝐷(𝒙)]

−𝔼𝒛∼𝑝(𝒛)[log(1 −𝐷(𝐺(𝒛)))],
(3)

where the first term encourages the discriminator to assign high prob-
abilities to actual data samples, reinforcing its ability to correctly rec-
ognize actual inputs. The second term drives the discriminator to as-
sign low probabilities to synthetic samples generated by the generator, 
thereby enhancing its capability to detect generated data. Conversely, 
the generator is trained using the loss:
𝐺 = −𝔼𝒛∼𝑝(𝒛)[log𝐷(𝐺(𝒛))], (4)

which drives the generator to produce samples that the discriminator is 
more likely to classify as actual samples. Training continues in an alter-
nating manner, first updating 𝐷, then 𝐺, until convergence is reached. 
At equilibrium, the generator produces signal representations so close 
to the actual distribution that the discriminator cannot reliably differ-
entiate between actual and generated data.

In our proposed GAN-AAE framework, the conventional GAN archi-
tecture is adapted to align with the structure of an end-to-end wireless 
communication system. The discriminator 𝐷 is provided with the ac-

tual received signal 𝒚actual received over the wireless channel as input. 
This signal serves as the empirical reference data, analogous to the role 
of 𝒙 ∼ 𝑝actual in the conventional GAN setup. The distribution of 𝒚actual
across training samples thus forms the counterpart of the empirical dis-
tribution 𝑝actual. It refers to the empirical probability distribution of the 
received signal samples generated under the given channel conditions. 
It is not defined by a closed-form expression but is instead estimated 
from a large set of simulated training samples. The generator 𝐺 is de-
signed to take two inputs: the encoded signal 𝒔, produced by the encoder 
network of the autoencoder framework, and a Gaussian random vec-
tor 𝒛 ∼  (0, 𝐼). The encoded signal 𝒔 represents a learned representa-
tion of the transmitted data, reflecting modulation or encoding features 
of the source message. The additional random input 𝒛 introduces con-
trolled stochasticity into the generation process, enhancing the diversity 
of generated samples. In this way, the pair (𝒔, 𝒛) serves as the input to the 
generator, extending the conventional formulation where the generator 
input is solely a random vector. While 𝒔 captures task-specific structure 
from the autoencoder, 𝒛 contributes randomness similar to the role of 
𝑝(𝒛) in traditional GANs, enabling the generator to model the variability 
inherent in wireless channels.

Fig. 2 shows the workflow of the proposed GAN-AAE model, which 
consists of two distinct phases: training and testing. During the training 
phase, the output of the generator is used for adversarial learning against 
the discriminator and for task-oriented learning through the decoder 
with cross-entropy loss. During testing, the discriminator is discarded, 
and only the trained generator is retained as a surrogate channel. The 
output of the trained generator is combined with the imperfect CSI es-
timate, processed through the attention module layer and decoder, and 
finally reconstructed for evaluation using metrics such as BER.

2.2.  GAN-attention-based end-to-end sparse autoencoder (GAN-AAE) 
communication system model

As shown in Fig. 3, the proposed GAN-AAE communication sys-
tem comprises an encoder (transmitter), a GAN-based channel modeling 
block, and an attention-augmented decoder (receiver), designed to op-
erate under Rayleigh fading with imperfect CSIR. At the transmitter, the 
input message 𝑑 is mapped to a latent space representation 𝒔 through 
a series of fully connected (FC) layers, forming the encoded signal that 
is forwarded to both the channel and the GAN module. To strengthen 
the encoder representation, sparsity is introduced in the latent space 
so that only a small number of latent units become active for each
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Fig. 3. Architecture of the proposed GAN-attention-based end-to-end sparse autoencoder communication system with imperfect CSIR.

transmitted message. This reduces redundant feature activations and re-
sults in a more compact and structured latent encoding, which improves 
generalization under varying channel conditions. The actual channel, 
composed of a Rayleigh fading path and AWGN, transforms 𝒔 into the 
actual received signal 𝒚actual = ℎ𝒔 +𝒘. The generator 𝐺 in the GAN takes 
the encoded signal 𝒔 ∈ ℂ𝑛 and an additional random vector 𝒛 ∼  (0, 𝐼)
of length 2𝑛 as its two inputs and learns to produce a synthetic received 
signal 𝒚gen = 𝐺(𝒔, 𝒛), which closely mimics the distribution of the actual 
received signal 𝒚actual. The discriminator 𝐷 receives both the actual sig-
nal 𝒚actual and the generated signal 𝒚gen, and is trained to distinguish be-
tween them. Adversarial training encourages the generator to improve 
the quality of its output by minimizing the adversarial loss, enabling it 
to learn the underlying channel characteristics of the transmitted sig-
nal. Once training reaches the Nash equilibrium i.e., the point at which 
the discriminator can no longer reliably distinguish between actual and 
generated signals, the generator is considered fully trained and produces 
𝒚gen-trained, a signal that closely approximates the actual channel output. 
This refined signal is then forwarded to the concatenation layer, where 
it is combined with the output of a separate imperfect CSI module ℎ̂. 
Thus, the system benefits from the ability of GAN to learn and replicate 
complex fading and noise characteristics in a data-driven manner. To 
enhance the decoder’s ability to process distorted and uncertain inputs, 
an attention layer is applied to the concatenated vector of 𝒚gen-trained and 
ℎ̂. The proposed model employs a dot-product self-attention mechanism 
operating in the latent feature domain. This attention mechanism com-
putes relevance scores between latent features by taking the dot product 
of the concatenated feature vector with its transpose, followed by soft-
max normalization to obtain attention weights. Unlike spatial attention 
used in vision tasks, this self-attention operates on abstract latent repre-
sentations and enables adaptive feature re-weighting rather than spatial 
localization. The attention mechanism dynamically selects the most rel-
evant features for reconstruction, allowing the network to emphasize 
signal components that are more informative and reliable under fading 
and imperfect CSI conditions. The selected features pass through a se-
quence of fully connected layers within the decoder, ultimately produc-
ing the reconstructed output 𝑑. This structure not only improves symbol 
reconstruction accuracy but also increases robustness against channel 
impairments by leveraging adversarial learning and latent-domain self-
attention-based feature prioritization.

By integrating sparse AE, GAN, and attention mechanism within a 
single learning pipeline, the proposed framework enables the generator-
refined signal, the imperfect CSI, and the attention-weighted latent rep-
resentation to jointly influence the decoding stage. During training, the 
adversarial refinement and feature prioritization occur in the same for-
ward path, meaning that the improved channel-like samples produced 
by the generator directly affect the representation that the attention 
mechanism selects for decoding. This leads to a closed and mutually re-

inforced interaction where the generator continuously adapts to produce 
more realistic channel outputs, the attention layer dynamically adjusts 
the contribution of the refined features based on CSIR reliability, and the 
decoder maps these selectively emphasized features to the symbol deci-
sion space. Thus, in the proposed hybrid framework, the sparse latent 
representation provides a more stable input distribution for the gener-
ator to refine and for the attention mechanism to selectively re-weight. 
The interaction between autoencoder-based representations and adver-
sarial learning has been noted to enhance robustness and latent-space 
consistency in wireless communication frameworks [25]. This unified 
interaction allows the system to form channel-aware symbol represen-
tations that better reflect the actual channel behavior under imperfect 
CSI, thereby improving reconstruction performance in a jointly learned 
manner. Algorithm 1 presents the end-to-end training procedure for the 
proposed GAN-AAE communication model under Rayleigh fading with 
imperfect CSIR. It outlines the coordinated update of four key neural 
network components: an encoder denoted by 𝑓 with parameters 𝜽𝑓 , a 
decoder denoted by 𝑔 with parameters 𝜽𝑔 , a generator 𝐺 with parame-
ters 𝜽𝐺, and a discriminator 𝐷 with parameters 𝜽𝐷. Here 𝜽 represents 
the set of trainable parameters (weights and biases). During each epoch, 
the dataset  is shuffled and split into batches batch. Each batch is en-
coded by 𝑓 to produce latent representations 𝒒batch. These representa-
tions are passed through a simulated Rayleigh fading channel to obtain 
the actual received signal 𝒚actual, and simultaneously passed to the gen-
erator, along with a batch of random complex vectors 𝒛batch, to produce 
𝒚gen = 𝐺(𝒒batch, 𝒛batch), a synthetic version of the received signal. The 
discriminator 𝐷 is trained to distinguish 𝒚actual from 𝒚gen by minimiz-
ing the loss 𝐿𝐷, while the generator 𝐺 is trained adversarially to fool 𝐷
by producing indistinguishable signals from the actual channel output. 
Both components are updated using gradient descent [13] on their re-
spective loss functions. Once adversarial feedback is incorporated, the 
channel estimate ̂ℎ is expanded to an 𝑛-length vector to match its dimen-
sion with the received signal 𝐲 before concatenation. Then the refined 
output 𝒚gen is concatenated with ̂𝒉 to form the combined representation 
𝐜 and passed through an attention mechanism. This mechanism com-
putes attention score matrix 𝐀 by taking the dot product between the 
concatenated vector and its transpose, followed by applying the soft-
max function to normalize these scores. The attention scores dynam-
ically weight the importance of different features within 𝐜, effectively 
enabling the model to prioritize more informative components of the in-
put. Subsequently, the context vector 𝐯 is calculated as a weighted sum 
of 𝐜 using the attention matrix 𝐀, providing a refined representation 
that captures the most relevant information for decoding. The context 
vector 𝒗 resulting from this process is decoded by 𝑔 to produce the re-
constructed batch ̂batch. The decoder’s performance is measured by the 
reconstruction loss 𝐿AE. Simultaneously, 𝐿1 regularization is applied to 
the encoder weights as 𝐿reg = 𝜆

∑

𝑖 |𝜽𝑖𝑓 |, and the total loss for encoder 
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Algorithm 1 GAN-AAE model training under imperfect CSIR.
Input: Learning rate 𝛼, epochs 𝑁epoch, batch size 𝑁batch, 𝐿1 regulariza-
tion weight 𝜆, training dataset  .
Initialize: Randomly initialize encoder 𝜽𝑓 , decoder 𝜽𝑔 , generator 𝜽𝐺, 
discriminator 𝜽𝐷. Set epoch = 0.
1: for epoch = 1 to 𝑁epoch do
2:  Shuffle training dataset 
3:  for each batch batch ∈  do
4:  Autoencoder Forward Pass:
5:  Encode input: 𝒒batch = 𝑓 (batch;𝜽𝑓 )
6:  Sample 𝒛batch ∼  (0, 𝐼) for current batch
7:  Generate channel-like output:

 𝒚gen = 𝐺(𝒒batch, 𝒛batch;𝜽𝐺)
8:  Obtain true channel output:

 𝒚actual = ℎ ⋅ 𝒒batch +𝒘
9:  Discriminator Update:

• Compute loss:
 𝐷 = −𝔼[log𝐷(𝒚actual)]

− 𝔼[log
(

1 −𝐷(𝒚gen)
)

]
• Update discriminator parameters:
 𝜽𝐷 ← 𝜽𝐷 − 𝛼∇𝜽𝐷𝐷

10:  Generator Update:
• Compute adversarial loss:
 𝐺 = −𝔼[log𝐷(𝒚gen)]
• Update generator parameters:
 𝜽𝐺 ← 𝜽𝐺 − 𝛼∇𝜽𝐺𝐺

11:  Concatenate: 𝒄 = Concat(𝒚gen, 𝒉̂)
12:  Compute attention:

 𝑨 = Softmax(𝒄 ⋅ 𝒄𝑇 )
13:  Compute context vector: 𝒗 = 𝑨𝒄
14:  Decode output: ̂batch = 𝑔(𝒗;𝜽𝒈)
15:  Compute AE loss:

 AE = 𝐿(batch, ̂batch)
16:  Apply 𝐿1 regularization:

 reg = 𝜆
∑

𝑖 |𝜽𝑖𝑓 |
17:  Total AE loss: total = AE + reg
18:  Update encoder and decoder:

•  𝜽𝑓 ← 𝜽𝑓 − 𝛼∇𝜽𝑓total
•  𝜽𝑔 ← 𝜽𝑔 − 𝛼∇𝜽𝑔AE

19:  end for
20: end for

Output: Trained parameters 𝜽𝑓 ,𝜽𝑔 ,𝜽𝐺 ,𝜽𝐷

update becomes 𝐿total = 𝐿AE + 𝐿reg. Once all epochs are completed, the 
trained parameters 𝜽𝑓  and 𝜽𝑔 are updated accordingly. Although the al-
gorithm operates using the intermediate generator output 𝒚gen during 
training, this signal progressively improves as the adversarial process 
continues. Once training converges, the generator is considered fully 
trained, and its output is denoted 𝒚gen-trained. This refined signal is used 
as the final input to the decoder during inference or deployment. The 
overall training framework enables the model to effectively learn and 
compensate for channel distortions, thereby improving reconstruction 
performance in the presence of imperfect CSI.

3.  Performance evaluation

This section describes the simulation setup and performance eval-
uation of the proposed GAN-AAE end-to-end communication system 
model.

To assess the effectiveness of the proposed model, a dataset com-
prising 20,000 independently and identically distributed (i.i.d.) source 
symbols is generated. These symbols are uniformly drawn from the de-
fined message set according to the modulation configuration adopted 
in the system. To ensure fair and statistically valid assessment, separate 

Table 2 
Layer-wise structure of the proposed GAN-AAE 
model.

 Layer  Output Dimensions
 Input 𝑀
 Encoder Dense + ReLU 𝑀
 Encoder Dense + Linear 𝑀
 Encoder Dense + Linear 𝑛
 Generator Dense + ReLU 𝑛
 Generator Dense + Linear 𝑛
 Refined Signal 𝑦gen 𝑛
 Imperfect CSI Module ̂ℎ 𝑛
 Concatenation Layer 2𝑛
 Attention Layer 2𝑛
 Decoder Dense + ReLU 𝑀
 Decoder Dense + ReLU 𝑀
 Decoder Dense + Softmax 𝑀

Table 3 
Hyperparameters used for training the GAN-AAE 
model.

 Hyperparameter  Value
 Learning rate  0.001
 Batch size  32
 Number of epochs  150
 L1 regularization strength  0.01
 Optimizer  Adam
 Loss function (AE)  Categorical crossentropy
 Adversarial loss function  Binary crossentropy
 Gradient update mode  Alternating 𝐺 and 𝐷

datasets are used for training, validation, and testing, each subjected 
to independent noise and channel realizations. Specifically, 20% of the 
training dataset is held out as a validation set to continuously monitor 
the model’s generalization ability and prevent overfitting during train-
ing. The BER is employed as the performance metric for system evalu-
ation. Simulations are conducted across a range of average SNR values 
to evaluate the proposed model’s robustness and decoding performance 
under varying channel conditions.

Table 2 presents the layer-wise structure of the proposed GAN-AAE 
model, highlighting the dimensions at each stage of the end-to-end com-
munication pipeline. The generator, although shown as a single module 
in Fig. 2, is implemented as a lightweight feedforward neural network 
with two dense layers. It first applies a nonlinear transformation using 
a ReLU-activated dense layer, followed by a linear projection layer that 
outputs the refined signal 𝑦gen. This structure enables the generator to 
learn nonlinear mappings from encoded symbols to realistic channel-
distorted signals. The discriminator used during adversarial training 
is also implemented as a lightweight two-layer feedforward network 
(dense-ReLU followed by dense-sigmoid). Since the discriminator is ac-
tive only during the training stage to guide the adversarial learning pro-
cess and plays no role in inference, it is not included in Table 2 and does 
not affect the final signal reconstruction pipeline. Here, 𝑀 denotes the 
number of possible messages, which depends on the modulation scheme 
used. For a BPSK system, 𝑀 = 2. Each message corresponds to a 𝑘-bit 
binary vector. The parameter 𝑛 represents the number of discrete chan-
nel uses per message, where 𝑛 = 𝑘 = log2(𝑀). Additionally, while the 
encoded and received signals are inherently complex-valued, the neu-
ral network layers operate on real-valued tensors. Therefore, complex 
vectors are internally represented as real-valued vectors of twice the 
original dimension by concatenating their real and imaginary parts.

Table 3 summarizes the hyperparameters used for training the pro-
posed GAN-AAE model. A learning rate of 0.001 is used across all neural 
network components to ensure stable convergence, especially important 
in adversarial training scenarios. The training is performed over 150 
epochs with a mini-batch size of 32, using the Adam optimizer [13] 
due to its adaptive learning capability and widespread effectiveness in 
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Fig. 4. BER vs average SNR performance comparison of the proposed GAN-AAE 
and theoretical MLD model over a BPSK Rayleigh fading channel for different 
values of 𝜌.

training deep models. All the layers use the default Xavier/He initial-
ization [13]. The autoencoder component is trained using categorical 
cross-entropy [13] loss, which is suitable for multi-class classification 
of source symbols. 𝐿1 regularization is applied to the encoder weights 
to promote sparsity in the latent space, improving generalization under 
varying channel conditions and preventing overfitting. For the adversar-
ial component, binary cross-entropy is employed as the loss function for 
both the generator and discriminator. This loss formulation aligns with 
standard GAN training. During each training iteration, one update step 
is performed for both the generator and the discriminator in an alter-
nating manner. These hyperparameter choices strike a balance between 
training stability and model performance in the presence of Rayleigh 
fading and imperfect CSI.

Fig. 4 presents the BER performance of the proposed GAN-AAE 
model under Rayleigh fading with imperfect CSIR. The curves corre-
spond to three different correlation values: 0.7, 0.8, and 0.9, represent-
ing increasing levels of CSI accuracy. For 𝜌 = 0.9, the GAN-AAE achieves 
a BER close to 10−3, demonstrating its robustness to mild channel uncer-
tainty. The results are compared with the BER performance derived from 
a maximum likelihood detection (MLD) scheme under the same imper-
fect CSI assumption. At 10dB SNR and 𝜌 = 0.9, the MLD model attains 
a BER of 0.072 as compared to 0.02404 BER of the proposed model. As 
the channel becomes less correlated (lower 𝜌), the BER increases, but the 
proposed model still maintains a clear advantage over the MLD, indicat-
ing its ability to learn and adapt to signal distortions caused by imperfect 
CSI. The superior performance of the proposed GAN-AAE model over 
the conventional MLD can be attributed to its ability to learn a detec-
tion strategy that is directly matched to the joint channel-CSI statistics 
encountered during training. Unlike MLD, which relies strictly on the 
analytical detection rule under imperfect CSI, the GAN-AAE is trained 
on a broad distribution of channel realizations generated by the GAN, 
enabling it to learn the joint statistical behaviour of the fading channel 
and its CSI distortions more comprehensively. Furthermore, the sparse 
autoencoder structure promotes compact and noise-resilient latent fea-
tures, while the attention module selectively emphasizes the most infor-
mative components induced by the channel. These combined features 
allow the GAN-AAE model to learn more robust decision regions under 
imperfect CSI.

At higher SNRs, both models exhibit a characteristic flattening of the 
BER curves, indicating the presence of an error floor. The BER curves 
of the MLD model exhibit a noticeable error floor beyond an SNR of 
around 20dB. In contrast, the proposed GAN-AAE system significantly 
outperforms the MLD baseline across all 𝜌 values by exhibiting the er-
ror floor beyond 40dB SNR. In the conventional Rayleigh fading system 

Fig. 5. BER versus average SNR performance comparison of the proposed GAN-
AAE and CNN-AE model over a BPSK Rayleigh fading channel for different val-
ues of 𝜌.

with imperfect CSIR, the high-SNR error floor is primarily caused by 
the non-vanishing residual channel estimation error. Since the CSI mis-
match remains even when the noise level becomes negligible, this resid-
ual distortion dominates the detection process at high SNR, preventing 
the BER from approaching zero. In the deep learning-based proposed 
system, several factors jointly contribute to the high-SNR error floor. 
One contributing factor is that the decoder’s learned decision bound-
aries remain imperfect for channel conditions that lie outside the domi-
nant patterns captured during training. Another factor is the latent-space 
mismatch caused by imperfect CSI, which remains even when the noise 
level becomes negligible. These influences can lead to a small but non-
zero BER floor, even though the proposed model achieves improved BER 
performance over a wide SNR range. Despite the presence of a residual 
error floor, the proposed GAN-AAE model manages to shift this floor to 
higher SNR levels. This behaviour can be attributed to complementary 
factors such as the end-to-end learning process, which enables coordi-
nated shaping of the encoder, latent representation, and decoder to form 
more resilient decision boundaries for the dominant channel statistics. 
The GAN-based refinement helps the model better approximate typical 
channel-induced distortions, reducing the effect of moderate CSI mis-
match. The attention mechanism further strengthens robustness by se-
lectively emphasizing the most reliable latent features under imperfect 
CSI. Together, these factors allow the proposed model to maintain im-
proved BER performance over a wider SNR range before the error floor 
is reached.

Fig. 5 illustrates the BER performance comparison between the pro-
posed GAN-AAE model and baseline CNN-AE based end-to-end com-
munication system [30], under the same channel conditions. The CNN-
based approach exhibits limited adaptability to channel imperfections. 
Across all 𝜌 values, the BER of the proposed GAN-AAE saturates at higher 
SNR compared to the CNN-AE model. While CNNs are effective at local 
feature extraction, their performance degrades when dealing with vary-
ing and uncertain channel conditions without dedicated mechanisms to 
capture such variations. In contrast, the proposed GAN-AAE system sig-
nificantly outperforms the CNN baseline across all correlation levels. 
At 10dB SNR and 𝜌 = 0.9, the CNN model attains a BER of 0.092 as 
compared to 0.02404 BER of the proposed model. Even for challenging 
scenarios like 𝜌 = 0.7, the GAN-AAE maintains a substantially lower 
BER than its CNN counterpart, demonstrating its ability to learn more 
accurate channel-compensated representations.

Fig. 6 compares the proposed GAN-AAE with the baseline DNN-
Channel AE model [29] under the same Rayleigh fading and imperfect 
CSIR conditions for 𝜌 = 0.7, 0.8, 0.9. The trainable channel surrogate 
of the DNN-Channel AE model shows robustness to CSI imperfections as 
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Fig. 6. BER versus average SNR performance comparison of the proposed GAN-
AAE and DNN-channel AE model over a BPSK Rayleigh fading channel for dif-
ferent values of 𝜌.

Fig. 7. BER vs average SNR performance comparison of the AAE model and 
proposed GAN-AAE model over a BPSK rayleigh fading channel for different 
values of 𝜌.

compared to the MLD and CNN-AE models, but it is still outperformed 
by the proposed GAN-AAE. The DNN-Channel AE exhibits its error floor 
at a higher SNR compared to the CNN-AE. However, this behaviour still 
occurs substantially earlier than in the proposed GAN-AAE. The pro-
posed model consistently achieves lower BER than the DNN-Channel 
AE model over the entire SNR range and for all 𝜌. The gains are most 
evident at higher SNRs, where the DNN-Channel AE saturates while the 
GAN-AAE continues to improve, reflecting the benefits of adversarial 
channel refinement together with attention-based feature selection. At 
10dB SNR and 𝜌 = 0.9, the DNN-Channel AE attains a BER of 0.06223, 
whereas the proposed model achieves 0.02404 BER.

Fig. 7 compares the BER performance of the proposed GAN-AAE 
model against a baseline autoencoder system, referred to as AAE, under 
Rayleigh fading with imperfect CSIR. In the AAE configuration, the GAN 
module is removed from the GAN-AAE architecture, while all other ar-
chitectural and training components remain identical, including the at-
tention mechanism, encoder-decoder structure, and imperfect CSI mod-
eling. This allows for a controlled comparison to isolate the impact of 
the GAN component on system performance. As shown in the figure, 
for all values of 𝜌, the GAN-AAE consistently outperforms the AAE. The 
adversarial training process of the GAN provides a more robust latent 
representation that helps the decoder better separate signal components 

Fig. 8. BER vs average SNR performance comparison of different BPSK rayleigh 
fading models for 𝜌 = 0.95 and 0.995.

Fig. 9. BER versus average SNR performance comparison of the proposed GAN-
AAE and MLD model over Rayleigh fading with imperfect CSIR (𝜌 = 0.9) for 
QPSK, 16-PSK, and 16-QAM.

from channel impairments under imperfect CSI, enabling improved sig-
nal reconstruction. The GAN-AAE achieves lower BER across the entire 
SNR range, with performance gaps widening at higher SNRs. At 10dB 
SNR and 𝜌 = 0.9, the AAE model attains a BER of 0.034, whereas the 
proposed model achieves 0.02404 BER. The AAE model exhibits an er-
ror floor beginning around 40dB, whereas the GAN-AAE continues to 
improve and reaches the error floor beyond 50dB. These observations 
highlight the ability of GAN to learn and replicate channel distortions 
more effectively, thereby enhancing signal reconstruction quality in the 
presence of imperfect CSI.

Fig. 8 illustrates the relative BER trends of the benchmark CNN-AE, 
DNN-Channel AE, and Rayleigh MLD models against the proposed GAN-
AAE under higher correlation levels of 0.95 and 0.995. These 𝜌 values 
reflect realistic, high-quality CSI scenarios typically achieved in practi-
cal systems. For both 𝜌 values, the proposed GAN-AAE maintains a clear 
BER advantage across the entire SNR range. The performance behaviour 
indicates that the benchmark schemes show limited improvement even 
as SNR increases, whereas the proposed model continues to benefit from 
higher SNR, giving lower BER for both correlation conditions.

Fig. 9 compares the BER of the proposed GAN-AAE model with 
the conventional MLD over a Rayleigh channel under imperfect CSIR 
(𝜌 = 0.9) for QPSK, 16-PSK, and 16-QAM. Across the SNR range, the
GAN-AAE achieves lower BER than MLD for all the modulation schemes. 
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Fig. 10. BER versus average SNR comparison of different BPSK rayleigh fading 
models under perfect CSI (𝜌 = 1) condition.

The relative gain, however, decreases with increasing constellation or-
der, since denser constellations have smaller decision regions and are 
more sensitive to errors. Hence, the achievable BER improvement is 
smaller in higher order modulations.

Fig. 10 compares the proposed GAN-AAE with all the baseline mod-
els under perfect CSIR i.e. 𝜌 = 1. The DNN-Channel AE uses an extra 
approximation through the surrogate in the deep neural network-based 
channel. Consequently, it fails to exploit the exact channel mapping in 
the perfect CSI environment and exhibits the highest BER across the SNR 
range compared with the other models. The two attention-based mod-
els: AAE and the proposed GAN-AAE, achieve the lowest BERs. The pro-
posed model shows marginally better performance than AAE, reflecting 
that when CSI is perfect, the GAN’s channel-refinement brings limited 
additional benefit beyond the attention-augmented autoencoder.

To assess the computational efficiency of the proposed GAN-AAE 
model for BPSK Rayleigh fading channel with imperfect CSI, Table 4 
shows a forward-pass complexity analysis in terms of floating point op-
erations (FLOPs) [31]. For fully connected and convolutional layers, the 
FLOPs are estimated using FLOPs = 2 × 𝐼 × 𝑂, where 𝐼 and 𝑂 are the in-
put and output dimensions of the layer, respectively. For the baseline 
CNN-AE model, the total FLOPs are 1280 FLOPs per input sample, com-
puted assuming consistent system parameters with the GAN-AAE model. 
For the DNN-Channel AE model, the total FLOPs are 1542 FLOPs per 
input sample. Although both the baseline models use convolutional lay-
ers, the DNN-Channel block employs much larger channel widths, re-
sulting in a higher operation cost. In contrast, the proposed GAN-AAE 
model includes an attention-based sparse autoencoder and an additional 
generator component. The attention-based autoencoder (AAE), exclud-
ing the GAN component, contributes 6092 FLOPs while the proposed 
GAN-AAE model yields a total of 12,248 FLOPs per input sample. These 
FLOP values correspond to the processing cost of a single input sample. 
During mini-batch training or inference, this cost scales linearly with 
the batch size. While the proposed GAN-AAE model introduces a higher 
computational complexity compared to baseline systems, this increase is 
accompanied by substantial improvements in system performance, par-
ticularly under conditions of channel uncertainty and imperfect CSI. The 
additional complexity stems from the integration of the attention mech-
anism and the generative component, both of which contribute to en-
hanced feature extraction and signal reconstruction capabilities. For the 
AAE model, the total FLOPs reduce to 6,092, isolating the overhead in-
troduced by the GAN component. This confirms that the majority of the 
computational cost resides in the encoder-decoder and attention mod-
ules. Although the AAE is marginally more efficient, it exhibits signifi-
cantly lower BER performance and an earlier error floor under high-SNR 

Table 4 
Forward-pass complexity comparison.
 Model  Total FLOPs
 Baseline CNN-AE  1280
 Baseline DNN-CHannel AE  1542
 AAE (without GAN)  6092
 Proposed GAN-AAE  12,248

conditions. This highlights that the modest increase in complexity intro-
duced by the GAN is justified by its substantial contribution to improved 
robustness against channel uncertainty.

This trade-off between complexity and performance highlights a 
common design consideration in modern communication systems, 
where increased computational cost can be justified by the resulting 
gains in robustness, adaptability, and decoding accuracy. For applica-
tions demanding high reliability in challenging wireless environments, 
the performance benefits of the GAN-AAE model make it a compelling 
alternative despite its elevated complexity.

4.  Conclusion

This work presented a GAN-integrated Attention-based Sparse Au-
toencoder (GAN-AAE) framework for end-to-end wireless communica-
tion over Rayleigh fading channels with imperfect CSI. The sparse la-
tent representation provides a stable feature space, the generator refines 
channel-like distortions based on learned statistics, and the attention 
module selectively emphasizes reliable latent features according to CSI 
quality. This joint refinement process enables the decoder to operate on 
channel-aware and noise-resilient representations, improving symbol re-
construction under CSI mismatch. The simulation results show that the 
GAN-AAE outperforms the conventional MLD model by learning deci-
sion regions that are adapted to the joint channel-CSI statistics encoun-
tered during training. The proposed model also surpasses baseline DNN 
and CNN-based systems for 𝑀-PSK and 𝑀-QAM modulation schemes 
across different 𝜌 values, demonstrating robustness under varying levels 
of CSI uncertainty. Furthermore, the proposed model effectively shifts 
the error floor to a higher SNR region compared to the baseline models. 
This improvement is driven by the effects of GAN-based channel re-
finement, end-to-end learning, and attention-guided feature selection. 
Additionally, a detailed complexity analysis revealed that although the 
GAN-AAE introduces higher computational overhead, its improved BER 
performance justifies the trade-off. These results validate the effective-
ness of integrating generative modeling and attention mechanisms into 
an end-to-end autoencoder for robust deep learning-based communica-
tion system design under imperfect CSI.

Future research can explore extending the GAN-AAE framework to 
MIMO systems and more complex channel conditions such as time-
varying or frequency-selective fading. Incorporating memory-aware 
mechanisms can enhance the model’s ability to capture temporal depen-
dencies and improve robustness. Additionally, incorporating adaptive 
or multi-head attention could allow the decoder to selectively focus on 
relevant features based on CSI reliability or channel variability. These 
extensions would broaden the applicability of the GAN-AAE model to 
more complex and heterogeneous wireless environments.
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