NIRMA UNIVERSITY

Institute:	Institute of Commerce
Name of Programme:	Bcom (Hons.) Programme
Course Code:	
Course Title:	Mathematics – II
Course Type:	Introductory Course
Year of introduction:	2022 (Semester-II)

L	Τ	Practical component		С		
		LPW	PW	W	S	
2	1	0	0	0		3

Course Learning Outcomes (CLO):

At the end of the course, students will be able to:

- Demonstrate use of appropriate mathematical tools in various business scenarios. BL-2
- Analyze business related problems and articulate possible solutions. BL-4
- Interpret the obtained results in context to managerial aspects.

Syllabus:

Total Teaching hours: 30

BL-5

Unit	Syllabus	Teaching
		hours
Ι	Differential Calculus	08
	• Introduction to differentiation and basic concepts.	
	• Differentiation using first principle, Derivatives of standard functions	
	(without proof), Rules of differentiation.	
	Chain rule, Logarithmic differentiation, and Differentiation of Implicit	
	function.	
	• Differentiation at a given point.	
	• Higher order derivative.	
	• Partial derivatives, Higher order partial derivatives (upto second order)	
II	Applications of Differentiation	06
	• Concepts of total, average and marginal functions of Cost, Revenue, Profit	
	and its applications.	
	Increasing and Decreasing function.	
	Critical points.	
	• Extrema's of a function by first order derivative test and second order	
	derivative test.	
III	Integral Calculus	09
	• Introduction to integration and basic concepts.	
	• Integrals of some standard functions (without proof), Rules of Integration.	

	Integration by substitution.	
	• Integration by parts.	
	Definite integrals and its properties.	
	 Integrals as area and Applications of integration. 	
IV	Matrices and System of Linear Equations	07
	Introduction to Matrices, Type of matrices.	
	• Matrix operations (up to order 3).	
	• Determinants of a square matrix, Minor and Cofactor.	
	• Transpose, Adjoint and Inverse of a matrix up to order 3.	
	• System of linear equations: Cramer's rule, Solution of system of linear	
	equations using matrix inversion method.	
	Applications of matrices.	

Self Study:	
Suggested Readings/ References:	 Allen, R.G.D. Mathematical Analysis for Economists, Macmillan Press. Chiang, A.C' Fundamental Methods of Mathematical Economics, Tata McGraw Hill. Jacques, I. Mathematics for Economics and Business, Pearson. Kapoor, V. K. Business Mathematics, Sultan Chand & Sons. Qazi., Khanna, V. K. & Bhambri, S. K. Business Mathematics, Vikas Publishing House Pvt Ltd. Raghavachari, M. Mathematics for Management-An Introduction, Tata McGraw Hill. Renshaw, G. Maths for Economics, Oxford University Press. Sancheti, D. C. & Kapoor, V. K., Business Mathematics, Sultan Chand & Son. P. Mariappan, Business Mathematics, Pearson. Stewart, J., Clegg, D. K., & Watson, S., Calculus: early transcendentals. Cengage Learning. Thomas Jr, G. B., Weir, M. D., Hass, J., Heil, C., Thomas' Calculus Early Transcendentals, Pearson. Strang, G., Linear algebra and its applications. Belmont, CA: Thomson, Brooks/Cole.
Suggested List of Experiments:	
Suggested Case List:	

L = Lecture, T = Tutorial, P = Practical, C = Credit

w.e.f. academic year 2022 - 23 and onwards