

Ace MF 10.4.0
Date: 04th April 2018

Notes:

(x) = Scheme Return
(y) =Benchmark Index Return

Std Dev = Standard Deviation
RFR = Risk Free Rate of Return
Avg = Average

Ratio Formula used in AceMF

Ratios	Formula
Average	Simple Average of (x)
Beta	Slope (x) : (y)
Beta (Correlation)	Correlation (x) * [Std $\operatorname{Dev}(x) / \operatorname{Std} \operatorname{Dev}(\mathrm{y})$]
Correlation	[$\left.\operatorname{Avg}\left(x^{*} \mathrm{y}\right)-\operatorname{Avg}(\mathrm{x})^{*} \operatorname{Avg}(\mathrm{y})\right] /[(\operatorname{Std} \operatorname{Dev}(\mathrm{x}) * \operatorname{Std} \operatorname{Dev}(\mathrm{y})$]
Downside Probability	Sum of all negative returns / No of days
Downside Risk	Downside risk = MeanOfRetDSR ^(1/2) MeanOfRetDSR=SumSq/ no of days SumSq= sum of all squares of X X = If (Return- RFR)>0 then 0 else Return- RFR
Fama	(Avg (x) - RFR) / [(Std $\operatorname{Dev}(x) / \operatorname{Std} \operatorname{Dev}(\mathrm{y}))^{*}(\operatorname{Avg}$ (y) - RFR]
Information Ratio	$(\operatorname{Avg}(x)-\operatorname{Avg}(y)) / \operatorname{Std} \operatorname{Dev}((x)-(y))$
Jensen's Alpha	(Avg (x) - [(RFR) + (Beta (x) * (Avg (y) - RFR))]
Return Due to Improper Diversification	$(\operatorname{Std} \operatorname{Dev}(x) / \operatorname{Std} \operatorname{Dev}(\mathrm{y}))^{*}(\operatorname{Avg}(\mathrm{y}) / \mathrm{RFR})$
Return due to Selectivity	((Avg(x) / RFR) * ((Std $\left.\operatorname{Dev}(x) / \operatorname{Std} \operatorname{Dev}(\mathrm{y}))^{*}(\operatorname{Avg}(\mathrm{y}) / \mathrm{RFR})\right)$
R-Squared	Covariance (x, y) / [Std $\operatorname{Dev}(\mathrm{x})$ * Std $\operatorname{Dev}(\mathrm{y})]^{\wedge} 2$
Standard Deviation Annualised	Std Dev (x) * Sq. Root (no. of dates in range)
Standard Deviation	Simple Standard Deviation of (x)
Semi Standard Deviation	Std Dev (x) which are below the average of (x) Here Value above Avg (x) are taken as 0 for Std Dev Calc.
Semi Standard Deviation (2)	Std Dev (x) which are below the average of (x) Here Value above Avg (x) are taken as blank for Std Dev Calc.
Semi Standard Deviation (3)	Std Dev (x) which are below the average of (x) Here Value above Avg (x) are taken as blank and only negative values are considered for Std Dev Calc.
Sharpe	(Avg (x)-RFR) / Std Dev(x)
Sortino	(Avg (x) - RFR) / Semi Std Dev(x)
Sortino (2)	(Avg (x) - RFR) / Semi Std Dev 2(x)
Tracking Error	Standard Deviation of difference between (x) and (y)
Treynor	(Avg (x) - RFR) / Beta
Up Capture Returns	$\{((($ Sum of (x) returns during bull runs)^(1/n)-1)*100)/ $\left.\left(\left((S u m \text { of }(y) \text { returns })^{\wedge}(1 / n)-1\right)^{*} 100\right)\right\}^{*} 100$
Down Capture Returns	$\{((($ Sum of (x) returns during bear runs)^(1/n)-1)*100) / (((Sum of (y) returns)^($\left.\left.1 / n)-1)^{*} 100\right)\right\}^{*} 100$
Up/Down Capture Ratio	Up Capture Return / Down Capture Return
PE of Scheme	Weighted Avg PE i.e Sum of (Company's TTM PE * Company's Holding \%)
PB of Scheme	Weighted Avg PBV i.e Sum of (Company's PBV * Company's Holding \%)

