NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	B.Tech. Computer Science and Engineering
Course Code:	2CSDE95
Course Title:	Computer Graphics
Course Type:	Departmental Elective
Year of Introduction:	2021-22

Credit Scheme

L	T	Practical Component				
	V-11	LPW	PW	W	S	
2	0	2	-	-	-	3

Course Learning Outcomes (CLO):

At the end of the course, students will be able to -

- 1. explain various aspects of computer graphics and computer visualization
- 2. infer the working of basic drawing and rendering algorithms in 2D and 3D
- 3. explain various 2D and 3D transformations
- 4. design components in 2D and 3D

~	**			
S	7	al	111	9:

Total Teaching hours: 30

Unit	Syllabus	Teaching hours
Unit-I	Introduction to Graphics system: Input devices, Output devices: CRT, Random Scan System, Raster Scan System, Color CRT Monitors, DVST, Introduction to graphics programming (OpenGL)	04
Unit-II	Raster Graphics: line, circle and Ellipse drawing algorithms, Polygon Drawing and filling methods, Attributes of output Primitive, Character Generation: Bit map and Outline font method.	07
Unit-III	Two-Dimensional Viewing: Viewing Pipeline, Windowing and clipping: Cohen and Sutherland line clipping. Linag-Barsky clipping method, Nicholl-Lee-Nicholl; Polygon Clipping: Sutherland-Hodgeman Polygon Clipping and Weiler Atherton Polygon Clipping	07
Unit-IV	2D and 3D Geometrical Transformations: scaling, translation, rotation, Shear, reflection; Three-Dimensional Viewing Transformations: Parallel and perspective projection, 3D clipping.	07
Unit-V	Curves and Surfaces: cubic splines, Bezier curves B-splines, Tensor product surfaces, surface of revolution sweep surfaces Fractal curves and surfaces.	05
Self-Study:	The self-study contents will be declared at the commencement	of semester.

- 134 -

Around 10% of the questions will be asked from self-study contents

Suggested Readings/ References:

- 1. Donald Hearn and M. Pauline Baker, Computer Graphics, , PEARSON EDUCATION.
- 2. James D. Foley, andries van Dam, Steven K. Feiner, John F. Hughes, Computer Graphics Principles and Practice, Addison-Wesley.
- 3. Steven Harrington, Computer Graphics: A programming approach, McGraw Hill
- 4. Donald Hearn and Pauline Baker, Computer Graphics Openl GL Version, Pearson Education.
- 5. F.S. Hill, Computer Graphics Using OpenGL, Pearson Education

Suggested	Sr. No.	Practical Title	Hours
List of	1.	Implement DDA line algorithm.	02
Experiments	2.	Implement Bresenham's line algorithm.	02
•	3.	Implement midpoint Circle Drawing algorithm.	02
	4.	Implement Ellipse Drawing algorithm.	02
	5.	Write a program to generate a generalized Histogram to show monthly sales of a company and fill every bar with different colours/patterns. The filling has to be done using boundary / flood fill algorithm.	04
	6.	Implement a program to draw a rectangle using mouse.	02
	7.	Implement Polygon filling algorithm. (Scan-line filling Algorithm)	04
	8.	Write a program that draws a polygon of users choice. Implement 2-D transformation concepts. The transformation should be selected by user in forms of menu displaying following options: a. Translate b. Rotate c. Scale d. Exit	06
	9.	(a) Implement Line Clipping algorithm. (As suggested by the faculty)(b) Implement Polygon Clipping algorithm	04
	10.	Implement basic program that draws a simple fractal	02
Suggested	-NA-		

Case List: