NIRMA UNIVERSITY

Institute:	Institute of Technology		
Name of Programme:	Integrated B.Tech.(CSE)-MBA		
Course Code:	CSI0702		
Course Title:	Machine Learning		
Course Type:	Core		
Year of Introduction:	2021-22		

Credit Scheme

L	T	Practical Component				
		LPW	PW	W	S	
2	0	2		-	-	3

Course Learning Outcomes (CLO):

At the end of the course, students will be able to -

- 1. comprehend statistical methods as basis of machine learning domain
- 2. apply variety of learning algorithms for appropriate applications
- 3. implement machine learning techniques to solve problems in applicable domains
- 4. evaluate and compare algorithms based on different metrics and parameters.

~						
Sy	7	a	b	u	S	:

Total Teaching hours: 20

Unit	Syllabus	Teaching hours
Unit-I	Introduction: Motivation and Applications, Visualization, Basics of Supervised and Unsupervised Learning	02
Unit-II	Regression Techniques: Basic concepts and applications of Regression, Simple Linear Regression – Gradient Descent and Normal Equation Method, Multiple Linear Regression, Linear Regression with Regularization, Hyperparameters tuning, Loss Functions. Evaluation Measures for Regression Techniques	07
Unit-III	Classification Techniques: Naïve Bayes Classification, Fitting Multivariate Bernoulli Distribution, Gaussian Distribution and Multinomial Distribution, K Nearest Neighbours, Decision trees. Support Vector Machines: Hard Margin and Soft Margin, Kernels and Kernel Trick. Evaluation Measures for Classification Techniques	09
Unit-V	Advanced Concepts: Introduction to SVM, ANN, Basics of Semi-Supervised and Reinforcement Learning, introduction to deep learning.	02

Self-Study:

The self-study contents will be declared at the commencement of semester.

Around 10% of the questions will be asked from self-study contents

Suggested Readings:

- 1. Tom Mitchell, Machine Learning, TMH
- 2. C. Bishop, Pattern Recognition and Machine Learning, Springer
- 3. R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification and Scene Analysis, Wiley

-4-

- 4. Kishan Mehrotra, Chilukuri Mohan and Sanjay Ranka, Elements of Artificial Neural Networks, Penram International
- 5. Rajjan Shinghal, Pattern Recognition, Techniques and Applications, OXFORD
- 6. Ethem alpaydin, Introduction to Machine Learning, PHI

Suggested List of	Sr. No.	Title	Hours
Experiments:	1	Introduction to Python and Numpy.	02
	2	Introduction to Pandas, Matplotlib and Sklearn.	02
	3	Simple and multiple linear regression using Gradient	02
		Descent without regularization. (Without using sklearn or	
		equivalent library for both)	
	4	Simple and Multiple linear regression using Gradient	02
		Descent and Normal equation with regularization.	
	5	K-nearest Neighbours classifications.	02
	6	Naïve bayes classification using Multivariate Bernoulli and	02
		Multinomial distribution.	
	7	Naïve bayes classification using Gaussian distribution.	02
	8	Decision Tree classification.	02
	9	Implementation of Support Vector Machine for linearly	02
		separable data.	
	10	Implementation of Support Vector Machine for non-	02
		linearly separable data.	

Suggested Case List: -NA-