NIRMA UNIVERSITY

Institute:	Institute of Technology		
Name of Programme:	Integrated B.Tech.(CSE)-MBA		
Course Code:	CSI0803		
Course Title:	Data Mining		
Course Type:	Core		
Year of Introduction:	2021-22		

Credit Scheme

L	T	Practio	cal Co	mpon	ent	C
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):

At the end of the course, students will be able to –

- 1. interpret data types and understand the need of data mining
- 2. infer various data pre-processing techniques for the mining process
- 3. apply basic principles and algorithms used in practical data mining
- 4. evaluate and compare data mining algorithms based on different metrics and parameters for real life applications.

~ 1	. 1		
Svl	la	bus	:

Total Teaching hours: 30

Unit	Syllabus	Teaching hours
Unit-I	Introduction: Motivation and importance, different kinds of data, data mining functionalities, classification of data mining systems, major issues in data mining	02
Unit-II	Data Pre-processing: Data summarization, data cleaning, data integration and transformation, data reduction, data discretization and concept hierarchy generation, feature extraction, feature transformation, feature selection, introduction to Dimensionality Reduction, CUR decomposition	08
Unit-III	Mining Frequent Patterns, Associations and Correlations: Basic concept, efficient and scalable frequent item-set mining methods, mining various kind of association rules, from association mining to correlation analysis, Advanced Association Rule Techniques, Measuring the Quality of Rules.	06
Unit-IV	Classification and Prediction: Neural Network-Based Algorithms, Rule-Based Algorithms, Combining Techniques, accuracy and error measures, evaluation of the accuracy of a classifier or predictor.	04
Unit-V	Advanced Cluster Analysis: Types of data in cluster analysis, overview of major clustering methods, learning, Hierarchical Agglomerative Clustering, k-means Algorithm, Self-Organizing Maps, probabilistic model-based clustering, clustering high dimensional data	07
Unit-VI	Case studies: Applications of Distributed and parallel Data Mining. Advanced Techniques: Web Mining, Spatial Database Mining, Temporal Mining, And Multimedia Mining.	03

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents

Suggested Readings:

- 1. Jiawei Han and Micheline Kamber, Data mining: Concepts and Techniques, Morgan Kaufmann Publishers.
- 2. Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann
- 3. Hand, Mannila, and Smyth., Principles of Data Mining, MIT Press
- 4. Berry and Linoff, Mastering Data Mining, Wiley
- 5. Delmater and Hancock, Data Mining Explained, Digital Press

Suggested List of	Sr. No.	Title	Hours
Experiments:	1	Implement Min-max normalization and z-score	
	2	normalization for the given dataset.	0.5
	Apply the methods to find the missing values in the	02	
	3	given dataset.	0.2
	Implement the suitable method with help of Quartile for outlier detection.	02	
	4		02
	4	Find frequent itemsets using an iterative level-wise approach based on candidate generation.	02
	5	Implement AND and OR gate using Perceptron	02
	J	Learning (self-implementation)	02
	6	Implement Ex-OR gate using backpropagation	02
	O	Neural Network. (self-implementation)	02
	7	Implement K-means clustering algorithm.	02
	8	Implement probability model based clustering	02
	· ·	algorithm.	02
	9	Getting acquainted with WEKA and R-	02
		programming.	02
	10	Use WEKA for classification.	02
Suggested Case	-NA-		

List: