NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY Course Syllabus Master of Computer Application (2-Years Programme) Semester-II

L	Τ	Р	С
3	0	2	4

Course Code	6CS151
Course Title	Design and Analysis of Algorithms

Course Outcomes:

At the end of the course, students will be able to -

- 1. identify the appropriate data structure to design an efficient algorithm for the given problem
- 2. implement various techniques for searching and sorting
- 3. apply appropriate algorithmic technique to solve a given problem
- 4. analyze performance of algorithms and estimate their worst-case and average-case behavior

Syllabus: Unit I	Teaching Hours: 45
Elementary algorithm: introduction to notations for program, efficiency of algorithms.	-
Unit II Asymptotic Notation: a notation for "the order of", other asymptotic notation, conditional asymptotic notation.	10
Analysis of algorithms: analyzing control structures: sequencing, "for" loops, recursive calls, "while" and "repeat" loops, using a barometer, amortized analysis. Unit III Greedy algorithms: graphs: minimum spanning trees-kruskal's algorithm, prim's algorithm, graphs: shortest paths. Knapsack problem, scheduling: minimizing time in the system, scheduling with deadlines.	8
Unit IV Divide-and-conquer: multiplying large integers, binary search, sorting: sorting by merging, quick sort, finding the median, matrix multiplication, and exponentiation.	8
Unit V Dynamic programming: making change, the principle of optimality, the knapsack problem, shortest path, chained matrix multiplication, approaches using recursion, memory functions.	8

Unit VI

Backtracking & branch-and-bound: basic idea, 8-queens problem, graph coloring, hamiltonian cycles, knapsack problem.

w.e.f. Academic Year 2020-21 onwards

7

Unit VII

Introduction to np-completeness: the class P and NP, polynomial reduction, npcompleteness problem, np-hard problems.

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

Laboratory work will be based on above syllabus with minimum 8 experiments to be incorporated that will be considered for evaluation.

Suggested Readings^:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithm, PHI
- 2. Gills Brassard, Paul Bratley, Fundamental of Algorithms, PHI.
- 3. Dave and Dave, Design and Analysis of Algorithms, Pearson
- 4. Simen Harris, James Ross, Beginning Algorithms, Wiley India.
- 5. E.Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Galgotia

L = Lecture, T = Tutorial, P = Practical, C = Credit

^ this is not an exhaustive list

MJ

w.e.f. Academic Year 2020-21 onwards