### **Nirma University**

# Institute of Technology, School of Technology

# M. Tech. Computer Science and Engineering (Data Science)

#### Semester – II

| L | T | P | C |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

| Course Code | 6CS372               |
|-------------|----------------------|
| Course Name | Predictive Analytics |

## **Course Learning Outcomes (CLOs):**

At the end of the course, students will be able to

- 1. apply statistical and regression analysis methods to identify new trends and patterns, uncover relationships, create forecasts, predict likelihoods, and test predictive hypotheses
- 2. compare the underlying predictive modeling techniques
- 3. develop the modeling skills from an industry perspective
- 4. select appropriate predictive modeling approaches suitable to various tasks

| Syllabus:                                                                                                                                                                                                     | Teaching<br>Hours |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Unit I                                                                                                                                                                                                        | 4                 |
| Introduction: Introducing CRISP-DM methodology, Need for it in business scenario                                                                                                                              |                   |
| Unit II                                                                                                                                                                                                       | 8                 |
| <b>Modeling Techniques:</b> Overview of Modeling Techniques, Unsupervised learning - Clustering, Supervised Learning - Classification, Linear Discriminant Analysis, Ensemble Learning, Random Forest models. |                   |
| Unit III                                                                                                                                                                                                      | 10                |
| Regression: Concept of Regression, Covariance, Correlation and ANOVA Review.                                                                                                                                  |                   |

**Regression:** Concept of Regression, Covariance, Correlation and ANOVA Review, Simple linear regression, multiple linear regression, parameter estimation, logistic regression, Maximum Likelihood Estimation (MLE) of parameters

Unit IV 5

**Model Evaluation:** Metrics for Performance Evaluation, Accuracy, confusion matrix, Precision, Recall, ROC Curves

du

Unit V

**Decision Trees and Unstructured data analysis:** Introduction to Decision Trees, CHI-Square Automatic Interaction Detectors (CHAID), Classification and Regression Tree (CART), Analysis of Unstructured data, Naive Bayes Classification

Unit VI

**Advanced Topics:** Forecasting and time series analysis, auto-regressive and moving average models, applications in stock market prediction weather prediction.

### **Self-Study:**

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

### **Laboratory Work:**

Laboratory work will be based on above syllabus with minimum 5 experiments to be incorporated.

### **Suggested Readings^:**

- 1. James, Witten, Hastie and Tibshirani, An Introduction to Statistical Learning: with Applications in R, Springer
- 2. Dinov, Ivo D., Data Science and Predictive Analytics, Springer
- 3. Hastie, Trevor, et al., The elements of statistical learning, Vol. 2. No. 1. New York: Springer
- 4. Montgomery, Douglas C., and George C. Runger., Applied statistics and probability for engineers, John Wiley & Sons
- 5. Hann, J. and Kamber, M. Data Mining: Concepts and Techniques, Morgan Kaufmann.

L=Lecture, T=Tutorial, P=Practical, C=Credit

^this is not an exhaustive list

dh