Institute:	Institute of Technology				
Name of Programme:	MTech CSE (Cyber Security)				
Course Code:	6CS465				
Course Title:	Quantum Computing				
Course Type:	(□ Core/ □ Value Added Course / √ Department Elective /				
	□ Institute Elective/ □ University Elective/ □ Open Elective /				
	□ Any other)				
Year of Introduction:	2022-23				

NIRMA UNIVERSITY

L	Т	Practical Component					
		LPW	PW	W	S		
2	-	2	-	-	-	3	

Course Learning Outcomes (CLOs):

At the end of the course, the student will be able to –

- explain the basics of quantum operation and gates (BL2) 1.
- analyze the classes of problems that are solvable by quantum computers (BL4) 2.
- 3. interpret the models for quantum computing
- 4. design quantum circuits and algorithms on related problems in Computer (BL6) Science

Syllabus

Syllabus:

Unit

Total Teaching hours: 30

Unit-I Physical Quantum Mechanics: Schrodinger's time dependent equation, Wave nature of particles, Hilber space, state vector, operators, Probabilities and measurements, postulates of quantum mechanics, Dirac formalism, Stern-Gerlach experiment, Bell inequalities and entanglement, Schmidt decomposition, super-dense coding, and teleportation

- Unit-II Quantum Computing: Limitations of conventional computing, Turing 05 machines and halting problem, quantum computation, quantum bits, block sphere representation of a qubit, multiple qubits, conventional quantum mechanisms, states, density operators, quantum operations, channels, and no-cloning theorem.
- Quantum Circuits and gates: Quantum circuits, Density matrix, Unit-III Simons algorithm, The wire and gate model, Universal set of gates, Toffoli gate, quantum circuits, Solovay-Kitaev theorem, and Deutsch-Jozsa algorithm
- Quantum Information Theory: Shannon entropy, noiseless coding 06 Unit-IV theorem, von Neumann entropy and properties, Schumacher compression, noisy-coding theorem, Distance measures, Knill-Laflamme conditions, Hamming bounds, quantum error-correcting codes, and error correction models
- Unit-IV Quantum Cryptography: Period-finding, factoring, Shor's algorithm, 05 quantum search, Grover's search algorithm, quantum Fourier

Teaching hours

(BL5)

06

08

distributio	on, entropi	quantum hidden subgroup problem, quantum key c uncertainty relations, Quantum-RSA, BB84, B- col, basic realization model of a quantum computer				
Self-Study:		The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents				
Suggested Readings/ References:	Info 2. Mik 3. N. Univ 4. T. H theo Pres 5. A.S. Stud 6. Mar Univ 7. D. A	 Michael A. Nielsen and Issac L. Chuang, Quantum Computation and Information, Cambridge University Press Mikio Nakahara and Tetsuo Ohmi, Quantum Computing, CRC Press N. David Mermin, Quantum Computer Science, Cambridge University Press T. Hienosaari & M. Ziman, The mathematical language of quantum theory: from uncertainty to entanglement, Cambridge University Press A.S. Holevo, Quantum systems, channels, information, de Gruyter Studies in Mathematical Physics, Mark M. Wilde, Quantum information Theory, Cambridge University Press D. A. Lidar & T. A. Brun, Quantum error correction, Cambridge University Press 				
Suggested List of Experiments:	Sr. No.	Title	Hours			
	1	Qiskit based Practicals Introduction to IBM Qiskit and integration qiskit libraries in Jupyter notebook, and design of basic quantum circuit based on supplied information bits, an adder implementation	02			
	2	In Qiskit, create a state vector that will give a $1/3$ probability of measuring $ 0\rangle 0\rangle$, and then create a different state vector that will give the same measurement probabilities. Verify that the probability of measuring $ 1\rangle 1\rangle$ for these two states is $2/3$.	02			
	3	Construct a compiled version of quantum circuit for Shor's algorithm.	04			
	4	Create quantum circuit functions that can compute the XOR, AND, NAND and OR gates using the NOT gate (expressed as x in Qiskit), the CNOT gate (expressed as cx in Qiskit) and the Toffoli gate (expressed as ccx in Qiskit).	04			
	5	Investigate the relationship between the number of qubits required for the desired accuracy of the phase estimation with high probability.	04			
	6	Construct a circuit for quantum counting implementing the IPE (Iterative Phase Estimation) algorithm to find the number of solutions to a search problem.	04			
dela						

- 7 Create circuits for 3-qubit code that encodes a one 02 qubit state into a three-qubit code state and utilize partiy check to detect and localise either bit-flip (X) or phase-flip (Z) errors on a single qubit in the codes.
- 8 Solve the 3-SAT problem through the Grover's 04 algorithm
- 9 Create a hybrid classical nueral network using 02 Qiskit and Pytorch
- 10 Implement image encoding in quantum states, 02 through the Flexible Representation of Quantum Images (FRQI) and the Novel Enhanced Quantum Representation (NEQR).

del