NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	MTech CSE (Cyber Security)
Course Code:	6CS466
Course Title:	Surveillance and Analytics
Course Type:	(☐ Core/☐ Value Added Course / √ Department Elective /
	☐ Institute Elective/☐ University Elective/☐ Open Elective/
	☐ Any other)
Year of Introduction:	2022-23

L	T	Practical Component			C	
		LPW	PW	W	S	
3	-	2	-	-	-	4

Course Learning Outcomes (CLOs):

At the end of the course, the student will be able to –

- 1. illustrate types of surveillance systems, their components and summarize (BL2) objectives of analyzing surveillance data
- 2. identify important components of a surveillance system and its analytical (BL3) pipeline and apply various preprocessing techniques on a video
- 3. assess different analytics tasks on surveillance data and adapt existing (BL5) techniques and models for them
- 4. create intelligent models using machine learning and deep learning for (BL6) different surveillance task

Syllabus:

Total Teaching hours: 45

Unit	Syllabus	Teaching hours		
Unit-I	Introduction: Types of Surveillance and Surveillance Systems,	03		
	Various Surveillance Sensors and type of the data they collect, Need,			
	Importance and Applications of Surveillance, Objectives of Analyzing			
	Surveillance Data			
Unit-II	Scalar Surveillance Systems: Surveillance based on images, Public	06		
	Health Surveillance, Home Security, monitored and unmonitored			
	security systems, IoT based analytics, speech analytics, border			
	patrolling surveillance mechanisms			
Unit-II	Components of Video Analytics: Understanding Video and its	08		
	Components, Need for Video Surveillance and its Analytics, Video			
	Analysis Pipeline, Video Preprocessing Techniques, Edge Detection in			
	Video, Key Frame Extraction Techniques, PCA, FLD, SIFT			
Unit-III	Foreground Extraction from a Video: Background Estimation,	10		
	Averaging, Gaussian Mixture Model, Optical Flow, Image			
	Segmentation, Region Growing, Region Splitting, Morphological			
	Operations, Tracking in a Multiple Camera Environment, Deep			
	Learning Techniques for Foreground Extraction from a Video			

dh

Unit-IV	Classification in Video: Spatiotemporal Convolutional	Neural	8
	Networks, ConvLSTM, 3D CNN, Attention Mechanisms,	Visual	
	Transformers, Fuzzy Classification		

Unit-V **Surveillance for Security:** Abandoned Object Detection, Human Behavioural Analysis, Human, Action Recognition, Perimeter Security, Crowd Analysis and Prediction of Crowd Congestion, Person Re-Identification

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents

Suggested Readings/ References:

- 1. Graeme A. Jones, Nikos Paragios, Carlo S. Regazzoni, Video-Based Surveillance Systems: Computer Vision and Distributed Processing, Kluwer Academic Publisher.
- 2. Nilanjan Dey, Amira Ashour and Suvojit Acharjee, Applied Video Processing in Surveillance and Monitoring Systems (IGI global).
- 3. Zhihao Chen, Ye Yang (Author), Jingyu Xue (Author), Liping Ye, Feng Guo, The Next Generation of Video Surveillance and Video Analytics: The Unified Intelligent Video Analytics Suite, CreateSpace Independent Publishing Platform.
- 4. E. R. Davies and Matthew Turk, Advanced Methods and Deep Learning in Computer Vision, Elsevier.
- 5. Umberto Michelucci, Advanced Applied Deep Learning: Convolutional Neural Networks and Object Detection. Apress

Suggested List of Experiments:

Sr. No.	Title	Hours
1	Reading and Writing Video Data	02
2	Key Frame Detection in a Video	02
3	Edge Detection in a Video	02
4	Real Time Object Detection and Tracking in a Video	06
5	Human Activity Recognition in a Video	06
6	Person Re-Identification	06
7	Human Behavior Analysis in a Video	06

dh