**NIRMA UNIVERSITY** 

| Institute:            | Institute of Technology                    |
|-----------------------|--------------------------------------------|
| Name of Programme:    | B.Tech. (CSE), Integrated B.Tech.(CSE)-MBA |
| Course Code:          | 3CS401ME24                                 |
| Course Title:         | Advanced Computer Architecture             |
| Course Type:          | Department Elective-I                      |
| Year of Introduction: | 2024-25                                    |

| L | T | <b>Practical Component</b> |    |   |   | C |
|---|---|----------------------------|----|---|---|---|
|   |   | LPW                        | PW | W | S |   |
| 3 | 1 | 0                          | -  | - | _ | 4 |

## Course Learning Outcomes (CLO):

At the end of the course, students will be able to

- 1. demonstrate an understanding of the fundamental design concepts in computer architecture (BL2)
- 2. apply the knowledge of computer organization to quantitatively evaluate the performance of a computer architecture (BL3)
- 3. explain the state-of-the-art computer architectures (BL5)
- 4. design a prototype of an existing computer architecture module (BL6)

| Unit       | Contents                                                                                                                                              | Teaching<br>Hours |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Unit-I     | Processor Design Concepts: Review of Basic Computer Organization,                                                                                     | (Total 45)        |
|            | Performance Evaluation Techniques, Instruction Pipelining and Performance, RISC Pipeline                                                              | 03                |
| Unit-II    | Instruction Pipelining: ILP, Pipeline and Control Hazards, Branch Prediction, Pipeline Hazard Analysis, MIPS Pipeline for multi-cycle                 | 10                |
| TT 1       | operations, Pipeline Scheduling, Static and Dynamic Scheduling                                                                                        |                   |
| Unit-III   | Superscalar Processing: Advanced Pipelining, Superscalar                                                                                              | 08                |
| TT '. TT 7 | Processors, Vector and GPU Architectures, Core Optimization                                                                                           |                   |
| Unit-IV    | Cache Memory: Introduction, Writing/Replacement Strategies, Design Techniques, Cache Optimization                                                     | 08                |
| Unit-V     | Primary and Secondary Storage Systems: Introduction to DRAM and                                                                                       | 06                |
|            | SRAM, DRAM Controllers and Address Mapping, Design Concepts of DRAM, Secondary Storage Systems                                                        | 00                |
| Unit-VI    | <b>Tiled Chip Multicore Processors:</b> Introduction, Routing Techniques in Network on Chip, Router Microarchitecture, TCMP and NoC Design Principles | 08                |

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents

Suggested Readings/ References:

- 1. John L. Hennessy and David A. Patterson, "Computer Architecture: A Quantitative Approach", Morgan Kaufmann Publishers
- 2. Kai Hwang and F. A. Briggs, "Computer architecture and parallel processor", McGraw Hill.
- 3. Hesham El-Rewini, Mostafa Abd-El-Barr, "Advanced Computer Architecture and Parallel Processing", Wiley.
- 4. William Stallings, "Computer Organization and Architecture", Prentice Hall.
- 5. Andrew S. Tanenbaum, "Structured Computer Organization", Prentice Hall.
- 6. Patterson, J. L. Hennessy, "Computer Organization and Design: The Hardware/Software Interface", Morgan Kaufmann Publication.

Suggested List of Experiments:

Suggested Case

List:

-NA-

-NA-