NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	
Course Code:	3CS501CC24
Course Title:	Design and Analysis of Algorithms
Course Type:	Core
Year of Introduction:	2024-25

L	T	Practical Component				C
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):

At the end of the course, students will be able to -

- 1. explain notion of algorithmic complexity and logic of fundamental algorithms (BL2)
- 2. identify suitable data structures to solve a problem effectively and efficiently (BL3)
- 3. apply optimal solution approach for complex problems (BL4)
- 4. formulate appropriate algorithm for real life problems (BL6)

Unit	Contents	Teaching Hours
Unit-I	Elementary Algorithmic: Efficiency of Algorithms, average and worst-case analysis, Elementary Operation	(Total 45) 07
Unit-II	Analysis Techniques: Empirical, mathematical, Asymptotic analysis and related unconditional and conditional notations. Analysis of Algorithms: Analyzing control structures: sequencing	07
	"For" loops, Recursive calls, "While" and "repeat" loops, Amortized analysis Solving Recurrences: Intelligent guesswork, Homogeneous	
Unit-III	recurrences, non-homogeneous Recurrences, Change of variable, Range transformations, Master Theorem, Recurrence Tree Advanced Data Structures: Red-black tree, Interval tree, Binomial heaps, Fibonacci Heap, disjoint set structures. Divide-and-Conquer: Multiplying large integers, merge sort, quick	09
Unit-IV	exponentiation. Dynamic Programming: The principle of optimality, 0/1 Knapsack Problem, Assembly line Scheduling Problem Matrix Chair	07
Unit-V	Multiplication, Longest Common Subservience, All pair shortest path: Floyd-Warshal's algorithm. Greedy Algorithms: Activity Selection Problem, Fractional Knapsack problem, Huffman Coding, Graphs: Minimum spanning trees-Kruskal's algorithm, Prim's algorithm, Single Source Shortest paths: Bellman ford algorithm, Dijkstra's algorithm.	08
Unit- VI	ford algorithm, Dijkstra's algorithm. Branch and Bound, Backtracking: Travelling salesman problem, nqueen problem, sum of subset problem, graph coloring problem. Theory of NP-Completeness, Randomized and Approximation Algorithms: Design of some classical problems.	07
	177	

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study Self-Study: contents. Charles E. Leiserson, Thomas H. Cormen, Ronald L. Rivest, Suggested 1. Clifford Stein, Introductionto Algorithms, PHI Readings/ Gilles Brassard & Paul Bratley, Fundamentals of Algorithmic, PHI. References: Sanguthevar Rajasekharan, Sahni, Sartaj 3. Ellis Horowitz, Fundamentals of Computer Algorithms, Galgotia.

 Robert Sedgewick and kevin Wayne - Algorithms, Addison Wesley
 Rod Stephens - Essential Algorithms: A practice Approach to Computer Algorithms Using Python and C#, Wiley

Suggested List of Experiments:	Sr. No.	Title	Hours
Experiments.	1	Various applications of Arrays and Matrices	02
	2	Working with Linked List	02
	3	Searching (binary, ternary, and hash search)	02
	4	Different applications of fundamental Sorting Algorithms	02
	5	Use of Recursion	04
	6	Divide and conquer applications and complexity computations	04
	7	Applications of Greedy algorithms	04
	8	Applications of Dynamic programming	04
	9	Working with tree algorithms	02
	10	Working with Graph Algorithms	04
Suggested Case List:	-NA-	Oxfor Specifica de produce sente sente esta estado dos todos estadades	

