NIRMA UNIVERSITY

Institute:	Institute of Technology			
Name of Programme:	B.Tech. (CSE), Integrated B.Tech.(CSE)-MBA			
Course Code:	3CS505ME24			
Course Title:	Optimization Techniques			
Course Type:	Department Elective-I			
Year of Introduction:	2024-25			

L	T	Practical Component				C
		LPW	PW	W	S	
3	1	1 - 2	-	-	_	4

Course Learning Outcomes (CLO):

At the end of the course, students will be able to -

- 1. illustrate key concepts and applications of various optimization techniques (BL2)
- 2. apply the appropriate optimization technique for the given problem (BL3)
- 3. analyse appropriate objective functions and constraints to solve real life optimization problems (BL4)
- 4. evaluate optimization solutions, including interpreting results and making informed decisions based on the optimization outcomes (BL5)

Unit	Contents			
		(Total 45)		
Unit-I	Introduction: Historical Development, Engineering applications of optimization, Statement of an optimization problem, Classification of optimization problems			
Unit-II	Classical Optimization Techniques: Single variable optimization, Constrained and unconstrained multivariable optimization, Relevant applications	06		
Unit-III	Linear Programming and Non Linear Programming: Standard form of a linear programming problem, Simplex method, Big-M method, Two phase method, Duality in linear programming, Quadratic programming, Stochastic linear programming, Relevant applications,: Unimodal function, Interpolation methods, Direct and indirect methods, Relevant applications	10		
Unit-IV	Transportation and Assignment Problem: The transportation algorithm, Methods for finding Initial solution, Test for optimality of transportation problems, Mathematical model of assignment problem, Hungarian method for solving Assignment problem.	08		
Unit-V	Geometric Programming: Unconstrained and constrained geometric programming problems, Geometric programming with mixed inequality	06		
Unit-VI	Integer Programming: Integer linear programming, Integer nonlinear programming, Relevant applications	06		
Unit-VII	Game Theory: Introduction, Characteristics of Game Theory, Two Person, zero sum games, Pure strategy. Dominance theory,	03		
Unit-VIII	Genetic Algorithms: Introduction, Representation methods, Selection methods, Operators, Replacement methods, Relevant applications	04		

168
2:\Divy_Academics - I\Divy_Academics\NOTIFICATIONS\1 - ACAD-COUN\49-Noti - AC - 120324\Noti - - 3(A) - 8_IT_BT - CSE - TES-V_VI Syllb-V.docx

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Suggested Readings/ References:

- 1. Rao, S. S., & Rao, S. S., Engineering optimization: theory and practice. John Wiley & Sons.
- 2. Hadley, G., Linear programming, Narosa Publishing house.
- 3. Taha, H. A., Operations research: An introduction. Pearson Education India.
- 4. Deb. K, Optimization for engineering design: Algorithms and examples. PHI Learning Pvt. Ltd.
- 5. Kumar, D. N., Multicriterion analysis in engineering and management. PHI Learning Pvt. Ltd

Suggested List of Experiments:

-NA-

Suggested Case

-NA-

List: