NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	B.Tech. All (Other than CSE)
Course Code:	XXXX
Course Title:	Data Analysis and Visualisation
Course Type:	Inter-disciplinary Minor-Core
Year of Introduction:	2024-25

L	T	Practical Component				
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):

At the end of the course, students will be able to –

- 1. demonstrate data characteristics using visualisation tools (BL2)
- 2. identify common data types and corresponding analysis approaches (BL3)
- 3. analyse the data using various statistical tools (BL4)
- 4. build data visualisation systems for interdisciplinary problems (BL6)

Unit	Contents	Teaching Hours (Total 45)
Unit-I	Introduction: Data Understanding, types of data, information and uncertainty, classes and attributes, interactions among attributes, relative distributions, summary statistics.	10
	Data Quality: inaccurate data, sparse data, missing data, insufficient data, imbalanced data	
Unit-II	Definition, Purpose, Usage, Business Data Visualization: Features of Business Data, Different Visualization fields. Forms of Business Data Visualization.	10
Unit-III	Social Challenges: Data ownership, data security, ethics and privacy The Data: Data Examination, Data Visualization Patterns, the Categories of Data Visualization. Data Visualization using different tools: Refine data and create, edit, alter, and display their visualizations (x-y graph, bar chart, pie chart, cube etc)	10
Unit-IV	Data Reduction and Feature Enhancement: Standardizing data, sampling data, using principal components to eliminate attributes, limitations and pitfalls of principal component analysis (PCA), curse of dimensionality	10
Unit-V	Showing Complex Data: Organizational Models, Preattentive Variables, Sorting and Rearranging, Searching and Filtering, Datatips, Data Spotlight, Dynamic Queries, Data Brushing, Local Zooming, Sortable Table, Radial Table, Muti-Y Graphs, Treemap, Small Multiples	05

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents

Suggested Readings/ References:

- 1. Jack G. Zheng, Data Visualization for Business Intelligence, Taylor and Fransis
- 2. Jiahei Han & Micheline Kamber, Data Mining Concepts and Techniques, Morgan Kaufmann
- 3. Jenifer Tidwell, Designing Interfaces, O'Reilly Media, inc.
- 4. Edward Tufte, The Visual Display of Quantitative Information, Graphics Press LLC.
- 5. Ben Fry, Visualizing Data, O'Reilly Media inc.
- 6. Noab Iliinsky, Julie Steele, Designing Data Visualization, O'reilly Media inc.
- 7. Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining, Pearson
- 8. Wes McKinney, Python for Data Analysis, Oreilly
- 9. S. Nagabhushana, Data Warehousing OLAP and Data Mining, New Age publishers

Suggested List of Experiments:

Sr. No. Title Hours 1 (a) Aim: Data Domain selection and 06

- (a) Aim: Data Domain selection and Identification of Characteristics of selected Dataset of different formats.
 - 1. What data domain you have selected?
 - 2. What are the information dataset contains?
 - 3. Identify the characteristics of various fields of the dataset. (The distribution, inference etc.)
 - 4. What are the insight (knowledge) we can generate for the selected dataset?
 - 5. What are the pattern available in the dataset?
 - (b) For selected dataset generate Five Number Summary using Python. Also generate mode and midrange, outlier detection using concept of Quartile method and other. Compare the results.

04

04

04

04

- 2 Case Study for Data visualization using Tableau. Use the dataset selected in practical -1 and design an interactive Dashboard for analysing data for selected KPI.
- 3 Data Preprocessing (Data Quality):
 Aim: Implement data smoothing and data normalization methods. Redundancy analysis using Pearson correlation and Chi- Square. Discretization by Intuitive Partitioning.
- 4 Data Reduction and Feature Enhancement:
 Aim: Implement Dimensionality reduction and
 Feature selection technique with selected dataset.
- Data Analysis and Visualization
 Aim: Apply Classification Techniques for selected datasets visualize the results.

6	Data Analysis and Visualization	04
	Aim: Apply Clustering Techniques for selected	
	datasets and visualize the results.	
7	Pattern Analysis and Visualization	04
	Aim: Implementation of various classification	
	and regression techniques and visualize the result	
	with selected visualization tool like Tableau.	
-NA	-	

Suggested Case List:

