NIRMA UNIVERSITY

Institute:	Institute of Technology			
Name of Programme:	Integrated B.Tech.(CSE)-MBA			
Course Code:	XXXX			
Course Title:	Natural Language Computing			
Course Type:	Department Elective-III			
Year of Introduction:	2024-25			

L	T	Practical Component				C
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):

At the end of the course, students will be able to -

- 1. infer about major issues and solutions related to natural language computing (BL2)
- 2. utilize various computational methods to understand language phenomena (BL3)
- 3. assess the sequence modelling techniques for various use cases (BL5)
- 4. develop applications with natural language capabilities (BL6)

Unit	Contents	Teaching Hours (Total 45)
Unit-I	Introduction and Text Classification: NLP overview, Regular Expressions, Text pre-processing, feature extraction from text, Neural networks for words and characters, Text Mining case study	07
Unit-II	Language Modelling: N gram models, Smoothing, Part of speech tagging, Hidden Markov models, Viterbi algorithm, Forward -backward algorithm, EM training, Models for Named Entity Recognition and Part of Speech tagging	18
Unit-III	Vector Space Models: Matrix factorization, Word2Vec and Doc2Vec, GloVe, Word - character and sentence embeddings, Topic modelling	06
Unit-IV	Neural Language Models: Recurrent Neural Networks and Long Short-term Memory networks, Large Language Models, Generative AI concepts,	07
Unit-V	Use cases in Sequence Modelling: Introducing machine translation, Encoder-decoder architecture, Attention mechanism, implementing a conversational chat-bot, Transformers, automatic speech recognition and text to speech synthesis	07

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents

Suggested Readings/ References:

- 1. Manning, Christopher D., and Hinrich Schütze. Foundations of Statistical Natural Language Processing. Cambridge, MA: MIT Press
- 2. Jurafsky, David, and James H. Martin. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. Upper Saddle River, NJ: Prentice-Hall

D;\Divy_Candemics\Riv = Academics - N

215

I/Divy-Academics\NOTIFICATIONS\1 - ACAD-COUN\49-Noti - AC - 120324\Noti - - 3(A) - 9_IT_BT - Int BT(CSE) - TES-V VI - SvIlb-V.docx 3. James Allen. Natural Language Understanding. The Benajmins/Cummings Publishing Company Inc.

4. Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python - Analyzing Text with the Natural Language Toolkit

5. Jacob Perkins, Python Text Processing with NLTK 2.0 Cookbook, Packt Publishing

Suggested List of Experiments:	Sr. No.	Title	Hours
	1	Basic Regular Expressions hands on and exploring libraries (NLTK, SpaCy, Gensim) for NLP tasks.	04
	2	Implementation of feature representation from text data using word embedding models.	02
	3	Implementation of PoS Tagging.	02
	4	Implementation of Sentiment Analysis on Twitter dataset.	02
	5	Virtual labs on Language models and N-gram detection.	02
	6	Implementation of Forward algorithm to address the likelihood problem of hidden Markov models.	04
	7	Implementation of Viterbi algorithm to address the decoding problem in hidden Markov models.	02
	8	Implementation of basic recurrent neural network for sequence learning task.	04
	9	Implementation of machine translation.	04
	10	Toy implementation of chatbot / Question Answering system.	04