NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	BTech All (Other than CSE)
Course Code:	3CS101CC24
Course Title:	Machine Learning
Course Type:	Interdisciplinary Minor-Core
Year of Introduction:	2024-25

L	T	Practical Component				
		LPW	PW	W	S	
3	0	2	-	_	-	4

Course Learning Outcomes (CLO): At the end of the course, the students will be able to

$A\iota$	the end of the course, the students will be able to –	
1.	explain statistical methods as the basis of the machine learning domain	(BL2)
2.	identify the learning algorithms for appropriate applications	(BL3)
3.	analyse machine learning techniques to solve problems in applicable domains	(BL4)
4.	evaluate algorithms based on different metrics and parameters.	(BL5)

Unit	Contents	Teaching Hours (Total 45)
Unit-I	Introduction: Motivation and Applications, importance of Data Visualization, Basics of Supervised and Unsupervised Learning, Significance of Model Training	06
	Probability and Statistics: Empirical Probability, Theoretical Probability, Joint Probability, Bayes' Theorem, Descriptive Statistics, Measure of Center, Measure of Variability, Measure of Position	
Unit-II	Regression Techniques: Basic concepts and applications of Regression, Simple Linear Regression – Gradient Descent and Normal Equation Method, Multiple Linear Regression, Non-Linear Regression, Linear Regression with Regularization, Hyper-parameters tuning, Loss	14
Unit-III	Functions, Evaluation Measures for Regression Techniques Classification Techniques: Naïve Bayes Classification, Fitting Multivariate Bernoulli Distribution, Gaussian Distribution and Multinomial Distribution, K-Nearest Neighbours, Decision trees. Support Vector Machines: Hard Margin and Soft Margin, Kernels and Kernel Trick, Evaluation Measures for Classification Techniques	10
Unit-IV	Artificial Neural Networks: Biological Neurons and Biological Neural Networks, Perceptron Learning, Activation Functions, Multilayer Perceptrons, Backpropagation Neural Networks, Competitive Neural Networks	08
Unit-V	Clustering: Hierarchical Agglomerative Clustering, k-means Algorithm, Self-Organizing Maps	04
Unit- VI	Advanced Concepts: Basics of Semi-Supervised and Reinforcement Learning, Linear Discriminant Analysis, Introduction to Deep Learning	03

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Tom Mitchell, Machine Learning, Tata McGraw Hill
- 2. C. Bishop, Pattern Recognition and Machine Learning, Springer
- 3. R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification and Scene Analysis, Wiley
- 4. Kishan Mehrotra, Chilukuri Mohan, and Sanjay Ranka, Elements of Artificial Neural Networks, Penram International
- 5. Rajjan Shinghal, Pattern Recognition, Techniques and Applications, Oxford Press
- 6. Athem Ealpaydin, Introduction to Machine Learning, Prentice Hall India

Suggested List of Experiments:

Sr.	Title	Hours
No.		
1	Introduction to Python and Numpy	02
2	Introduction to Pandas, Matplotlib, and Sklearn	02
3	Simple and Multiple Linear Regression using Gradient Descent and normal	04
	Equation Methods (without using sklearn or equivalent library for both)	
4	Linear Regression with Regularization (without using sklearn or equivalent	02
	library) and Simple and Multiple Linear Regression with and without	
	regularization using sklearn	
5	Naïve-Bayes - Multivariate Bernoulli, Multinomial and Gaussian using	04
	sklearn	
6	Decision Trees – ID3, C4.5 using sklearn	02
7	Support Vector Classification using sklearn	04
8	AND gate using Perceptron Learning (self-implementation)	.04
9	Ex-OR Gate/any other problem using Backpropagation Neural Networks	' 04
	(self-implementation)	
10	K-means clustering using sklearn	02