NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	BTech All (Other than CSE and EC)
Course Code:	3CS105IE24
Course Title:	Introduction to Deep Learning
Course Type:	Interdisciplinary Minor-Elective
Year of Introduction:	2024-25

L	T	Practical Component				
		LPW	PW	7 W S	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to –

- 5. identify the strengths and weaknesses of the deep network (BL3)
- 6. analyse the suitability of different deep networks for problems in various domains (BL4)
- 7. interpret the functioning and math behind the deep learning architectures
- 8. choose deep networks for solving problems pertaining to computer science and (BL5) interdisciplinary research. (BL5)

Unit	Contents	Teaching Hours (Total 45)
Unit-I	Basics of ANN: Introduction to ANN, Training of ANN for its parameterization, CNN basic architecture, layer details, activation functions, loss functions, convolution operation, strides, and calculations	10
Unit-II	Batch Normalisation, binary classification, multi-class classification, and different architecture. Applications like Glassification, Segmentation, and Localisation. Transfer Learning concepts and applications.	10
Unit-III	Introduction to recurrent neural networks (RNNs), Building a simple RNN model, Sequence learning and attention mechanisms, LSTM (Image Labelling), GRU	10
Unit-IV	Understanding Generative Adversarial Networks, Image Inpainting, Image Super Resolution, Colorization of Black and White Images, Human Face Generation, Text2Image, Music Generation	10
Unit-V	Recent trends: Variational Autoencoders, Multi-task Deep Learning, Multi-view Deep Learning. Applications: Vision, NLP, Speech, Text	05

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Zhang, Aston, et al. Dive into deep learning. Cambridge University Press
- 2. Glassner, Andrew. Deep learning: a visual approach. No Starch Press
- 3. Prince, Simon JD. Understanding Deep Learning. MIT Press
- 4. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press.

- 5. Adam Gibson, Josh Patterson, Deep Learning, O'Reilly Media, Inc.
- 6. Ronald T. Kneusel, Practical Deep Learning, No starch press.
- 7. Rajjan Shinghal, Pattern Recognition, Techniques and Applications, Oxford.
- 8. Tom Mitchell, Machine Learning, Tata McGraw Hill.

Suggested List of Experiments:

Sr. No.	Title	Hours
1	Kaggle: Titanic – Machine Learning from Disaster	02
2	Basics of Tensorflow and Keras	02
3	Conventional Feed Forward Neural Network on MNIST. Write code using (a) Sequential Class, (b) Model Class API	02
4	Kaggle: Digit Recognizer (Digit Recognizer Kaggle)	02
5	Kaggle: CIFAR-10 - Object Recognition in Images Use transfer learning.	04
6	Image Segmentation & Detection Using Deep Networks	04
7	Auto Encoders for Dimensionality Reduction	04
8	Build a language model using RNN. Write functions to sample novel sentences and find the probability of the input sentence. Also, the Recurrent Neural Network was used for Sentiment Analysis.	04
9	Recurrent Neural Network for Image Captioning	04
10	GAN for MNIST-like image generation	02