NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	BTech All (Other than CSE)
Course Code:	3CS107IE24
Course Title:	Analytics of IoT
Course Type:	Interdisciplinary Minor-Elective
Year of Introduction:	2024-25

L	T	Practical Component				
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to -

- 1. explain the architectural components and platforms of the IoT ecosystem
 2. apply appropriate access technology and protocols as per the application (BL3)
- 2. apply appropriate access technology and protocols as per the application (BL3) requirement
- 3. appraise the role of big data, cloud computing, and data analytics in a typical IoT (BL5) system
- 4. perceive applications with suitable lightweight data processing and communication (BL5) methodologies.

Unit	Contents	Teaching Hours
		(Total 45)
Unit-I	Introduction to IoT: Importance and applications, IoT architectures,	05
	Introduction to analytics, IoT analytics challenges	
Unit-II	IoT devices, Networking basics, IoT connectivity protocols, IoT	10
	networking and data messaging protocols, analysing data to infer	
	protocol and device characteristics	
Unit-III	IoT Analytics for the Cloud: Introduction to elastic analytics, Cloud	09
	security and analytics, designing data processing for analytics,	
	Applying big data technology to storage	
Unit-IV	Exploring IoT Data: Exploring and visualizing data, Techniques to	07
	understand data quality, Basic time series analysis, Statistical analysis	
Unit-V	Data Science for IoT Analytics: Introduction to Machine Learning,	09
	Feature engineering with IoT data, Validation methods, Understanding	
	the bias-variance trade-off, Use cases for deep learning with IoT data	
Unit-VI	Strategies to Organize Data for Analytics: Linked Analytical	05
	Datasets, Managing data lakes, data retention strategy	

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents

Suggested Readings/ References:

- 1. Minteer, Andrew, Analytics for the Internet of Things (IoT), Packt Publishing Ltd
- 2. Kai Hwang, Min Chen, Big-Data Analytics for Cloud, IoT and Cognitive Computing, Wiley

- 3. Colin Dow, Hands-On Edge Analytics with Azure IoT: Design and develop IoT applications with edge analytical solutions, including Azure IoT Edge, Packt Publishing Ltd
- 4. Hwaiyu Geng, Internet of Things and Data Analytics Handbook, Wiley.
- 5. John Soldatos, Building Blocks for IoT Analytics Internet-of-Things Analytics, River Publishers
- 6. Gerardus Blokdyk, IoT Analytics: a Complete Guide, 5starcooks

Suggested List of Experiments:

Sr.	Title	Hours
No.		
1	Programming the IoT boards: ESP8266/ESP32/Arduino with IDE	02
2	IoT Applications Development with Cisco Packet Tracer	02
3	IoT Sensor and Actuator integration with ESP32/ESP8266 with WiFi and HTTP	02
4	Implementing REST API Server for IoT devices	02
5	Publish and Subscribe with MQTT Client and MQTT Broker using RPi/ESP8266/ESP32	04
6	IoT Application with NodeRed: MQTT, MongoDB, HTTP REST client and server	04
7	IoT Application Development with NodeRed: Designing Dashboard for IoT Data	04
8	Designing IoT Analytics Pipeline on Cloud Platform and Data Visualization	04
9	Analysing and Processing IoT Data with ML approaches	02
10	Deploying the inference models on Edge Computing devices	04