NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	Integrated BTech (CSE)-MBA
Course Code:	3CS108ME24
Course Title:	Reinforcement Learning
Course Type:	Department Elective-V
Year of Introduction:	2024-25

L	T	Practio	cal Co	mpon	C	
		LPW	PW	W	S	
3	0	2	_	-	-	4

(Total 45) 07

07

07

10

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to -

1.	summarise the fundamental concepts and principles of reinforcement learning	(BL2)
2.	make use of tabular methods to solve classical control problems	(BL3)
	choose suitable approximation solutions for reinforcement learning	(BL3)
4.	recommend suitable techniques and applications of reinforcement learning.	(BL5)
Unit Contents		Teaching
		Hours

Unit-I	Foundations: Introduction and Basics of RL, Defining RL Framework,					
	Markov decision process (MDP), state and action value functions,					
	Bellman equations, optimality of value functions and policies, Bellman					
	optimality equations.					

	- r
Unit-II	Prediction and Control by Dynamic Programming: Overview of
	dynamic programming for MDP, definition and formulation of planning
	in MDPs, principle of optimality, iterative policy evaluation, policy
G.	iteration, value iteration

*	ttoration, vario ttoration.				
Unit-III	Monte Carlo Methods for Model Free Prediction and Control:				
	Overview of Monte Carlo methods for model-free RL, Monte Carlo				
	control, on-policy and off-policy learning, Importance sampling,				
	Incremental Monte Carlo Methods for Model Free Prediction.				

Unit-IV	TD Methods: Overview TD (0), TD (1), and TD(λ), k-step estimators,	07
	unified view of DP, MC, and TD evaluation methods, TD Control	
	methods - SARSA, O-Learning, and their variants.	

		/	0)				
Unit-V	Function	Approximat	ion Me	ethods:	Overview	of	function
	approximat	ion methods,	gradient	descent	from Mac	hine	Learning,
	Gradient MC and Semi-gradient TD (0) algorithms, Eligibility trace for						
	function ap	proximation,	Control	with fun	ction appro-	ximat	tion, least
	squares, Ex	perience repla	ys in deep	O-Netw	orks.		

	squares, Experience replays in deep Q-Networks.	
Unit-VI	Recent Advances and Applications: Meta-learning, Multi-Agent	07
	Reinforcement Learning, Partially Observable Markov Decision	
	Process, Applying RL for real-world problems	

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents

Suggested Readings/ References:

- 1. Richard S. Sutton and Andrew G. Barto, Reinforcement learning: An introduction, MIT Press
- 2. Wiering, Marco, and Martijn Van Otterlo, Reinforcement Learning-Adaptation, learning, and optimization, Springer
- 3. Dimitri P. Bertsekas, Reinforcement Learning and Optimal Control, Athena Scientific.
- 4. Warren B. Powell, Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions, Wiley
- 5. Csaba Szepesvári, Algorithms for Reinforcement Learning, Springer

Suggested List of Experiments:

Sr.	Title	Hours
No.		
1	Write a program to develop an agent that takes random actions in a grid world environment.	04
2	Write a program that constructs an agent with a Q-learning algorithm.	02
3	Create a program that trains an agent using SARSA and Q-learning.	02
4	Write a program to create a multi-armed bandit problem with multiple arms or actions, using different exploration strategies such as epsilon-greedy and UCB.	04
5	Write a program to design a Markov Decision Process (MDP) and employ the value iteration algorithm to calculate optimal values.	02
6	Write a program to design a Markov Decision Process (MDP) and employ the policy iteration algorithm to calculate optimal policy.	02
7	Write a program to simulate the CartPole environment in OpenAI Gym and implement a Deep Q Network.	04
8	Write a program to design an environment with a continuous action space and implement an actor-critic architecture with a neural network.	02
9	Develop a DQN-based reinforcement learning model to tackle a real-world application.	04
10	Develop an A2C-based reinforcement learning model to tackle a real-world application	04