NIRMA UNIVERSITY

Institute:	Institute of Technology	
Name of Programme:	Integrated BTech (CSE)-MBA	
Course Code:	3CS110ME24	
Course Title:	Federated Learning	
Course Type:	Department Elective-VI	
Year of Introduction:	2024-25	

L	Т	Practical Component				C
		LPW	PW	W	S	
3	0	2	-	-	-	4

12

06

04

06

04

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to –

explain the fundamentals of federated learning
 make use of techniques of federated learning for developing various applications
 list real-world applications and use cases of federated learning
 discuss the privacy and security considerations in federated learning.

(BL3)
(BL4)
(BL6)

Unit Contents Teaching
Hours
(Total 45)
Unit-I Introduction: Empirical Probability, Theoretical Probability, Joint 05

Unit-I Introduction: Empirical Probability, Theoretical Probability, Joint Probability, Bayes' Theorem, Descriptive Statistics, Measure of Center, Measure of Variability, Measure of Position, Data visualization, supervised and unsupervised learning
Unit-II Regression Techniques: Basic concepts and applications of

Unit-II Regression Techniques: Basic concepts and applications of Regression, Simple Linear Regression – Gradient Descent and Normal Equation Method, Multiple Linear Regression, Non-Linear Regression, Linear Regression with Regularization, Hyper-parameters tuning, Loss Functions, Evaluation Measures for Regression Techniques, Artificial neural network, Perceptron Learning, Activation Functions, Multilayer Perceptrons.

Unit-III Introduction to Federated Learning: Concept of federated learning,
Motivations and advantages, Federated learning as a solution, Current
development in federated learning.

Unit-IV Distributed Machine learning: Introduction to DML, scalability, privacy in DML, privacy-preserving gradient descent. Horizontal federated learning, architecture of HFL, Vertical federated learning, architecture of VFL

Unit-V **Federated Learning Algorithms:** Federated Averaging, Federated Stochastic Gradient Descent (FSGD), Federated Learning with Differential Privacy, Other federated learning algorithms

Unit-VI Privacy and Security in Federated Learning: Differential privacy and federated learning, Secure aggregation and encryption techniques, Threat models and mitigations, Real-world privacy breaches and lessons learned

Unit-VII **Application:** Healthcare and medical research, Finance and fraud detection, Mobile and IoT applications, Federated learning in federated industries

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents

Suggested Readings/ References:

- 1. Qiang Yang Yu, Federated Learning, Morgan and Claypool
- 2. Muhammad Habib, Federated Learning Systems, Springer
- 3. Heiko Ludwig, Nathalie Baracaldo, Federated Learning: A Comprehensive Overview of Methods and Applications, Springer
- 4. Roozbeh Razavi-Far, Boyu Wang, et al., Federated and Transfer Learning: (Adaptation, Learning, and Optimization), Springer

Suggested List of Experiments:

Sr. No.		Title	Hours
1	Introduction to Python and Libraries		
	0	Set up a Python environment with popular libraries (e.g., NumPy,	
		Pandas, Scikit-Learn).	
	0	Load a dataset and perform basic data manipulation tasks.	
	0	Explore Jupyter Notebooks for interactive coding.	
2	Data Preprocessing and Visualization		
	0	Clean and preprocess a real-world dataset.	
	0	Visualize the data using Matplotlib and Seaborn.	
	0	Handle missing values, outliers, and feature scaling.	
3	Supervised Learning - Regression		02
	0	Build a simple linear regression model using Scikit-Learn.	
	0	Train and evaluate the model on a regression dataset.	
	0	Plot the regression line and assess model performance.	
4	Setting	g Up a Federated Learning Environment	02
	0	Install and configure the necessary libraries and tools for federated	
\		learning (e.g., TensorFlow, PyTorch)	
•	0	Set up a basic federated learning environment.	
	0	Train a simple federated model on a synthetic dataset.	
5	Federated Averaging Algorithm		04
	0	Implement the Federated Averaging (FedAvg) algorithm.	
	0	Use FedAvg to train a basic model across decentralized data	
		sources.	
	0	Evaluate the model's performance and compare it to a centralized	
		model.	
6	Implementing Federated Stochastic Gradient Descent (FSGD)		04
	0	Implement Federated Stochastic Gradient Descent (FSGD).	
	0	Train a model using FSGD and compare its convergence with	
		standard SGD.	
		Discuss the benefits and drawbacks of FSGD.	
7	Differential Privacy in Federated Learning		02
	0	Implement Federated Learning with Differential Privacy (DP).	
	0	Explore the impact of varying privacy parameters on model	
		accuracy.	
	0	Discuss the trade-offs between privacy and utility.	

8	Secure	Secure Aggregation and Encryption Techniques	
	0	Implement secure aggregation techniques (e.g., secure sum) in	
		federated learning.	
	0	Encrypt and decrypt model updates for privacy.	
	0	Compare the performance of secure aggregation with non-secure methods.	
9	Federa	Federated Learning on Heterogeneous Data Sources	
	0	Simulate federated learning on datasets with varying distributions.	
	0	Explore techniques for handling non-IID (non-Independently and	
		Identically Distributed) data.	
	0	Discuss strategies to mitigate issues with heterogeneous data sources.	
10	Federa	Federated Transfer Learning	
	0	Implement federated transfer learning to leverage pre-trained models.	
	0	Fine-tune a pre-trained model on decentralized data sources.	
	0	Evaluate the transfer learning model's performance.	