NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	BTech (CSE)
Course Code:	3CS110ME24
Course Title:	Federated Learning
Course Type:	Disciplinary Minor-Elective
Year of Introduction:	2024-25

L	T	Practical Component				C
		LPW	PW	W	S	
3	0	2		-	-	4

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to -

- 1. explain the fundamentals of federated learning (BL2)
- 2. make use of techniques of federated learning for developing various applications (BL3)
- 3. list real-world applications and use cases of federated learning
- 4. discuss the privacy and security considerations in federated learning. (BL4) (BL6)

Unit	Contents	Teaching Hours (Total 45)
Unit-I	Introduction: Empirical Probability, Theoretical Probability, Joint Probability, Bayes' Theorem, Descriptive Statistics, Measure of Center, Measure of Variability, Measure of Position, Data	05
Unit-II	visualization, supervised and unsupervised learning Regression Techniques: Basic concepts and applications of Regression, Simple Linear Regression – Gradient Descent and Normal Equation Method, Multiple Linear Regression, Non-Linear	12
	Regression, Linear Regression with Regularization, Hyper-parameters tuning, Loss Functions, Evaluation Measures for Regression Techniques, Artificial neural network, Perceptron Learning,	
Unit-III	Activation Functions, Multilayer Perceptrons. Introduction to Federated Learning: Concept of federated learning, Motivations and advantages, Federated learning as a solution, Current development in federated learning.	08
Unit-IV	Distributed Machine learning: Introduction to DML, scalability, privacy in DML, privacy-preserving gradient descent. Horizontal federated learning, architecture of HFL, Vertical federated learning, architecture of VFL	06
Unit-V	Federated Learning Algorithms: Federated Averaging, Federated Stochastic Gradient Descent (FSGD), Federated Learning with Differential Privacy, Other federated learning algorithms	04
Unit-VI	Privacy and Security in Federated Learning: Differential privacy and federated learning, Secure aggregation and encryption techniques, Threat models and mitigations, Real-world privacy breaches and lessons learned	06
Unit-VII	Application: Healthcare and medical research, Finance and fraud detection, Mobile and IoT applications, Federated learning in federated industries	04

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents

Suggested Readings/ References:

- 1. Qiang Yang Yu, Federated Learning, Morgan and Claypool
- 2. Muhammad Habib, Federated Learning Systems, Springer
- 3. Heiko Ludwig, Nathalie Baracaldo, Federated Learning: A Comprehensive Overview of
- 4. Methods and Applications, Springer
- 5. Roozbeh Razavi-Far, Boyu Wang, et al., Federated and Transfer Learning: (Adaptation, Learning, and Optimization), Springer

Suggested List of Experiments:

Sr. No.	Title	Hours
1	Introduction to Python and Libraries	02
	 Set up a Python environment with popular libraries (e.g., NumPy, 	
	Pandas, Scikit-Learn).	
	 Load a dataset and perform basic data manipulation tasks. 	
	 Explore Jupyter Notebooks for interactive coding. 	
2	Data Preprocessing and Visualization	02
	 Clean and preprocess a real-world dataset. 	
	 Visualize the data using Matplotlib and Seaborn. 	
	 Handle missing values, outliers, and feature scaling. 	
3	Supervised Learning - Regression	02
	 Build a simple linear regression model using Scikit-Learn. 	
	 Train and evaluate the model on a regression dataset. 	
	 Plot the regression line and assess model performance. 	
4	Setting Up a Federated Learning Environment	02
	 Install and configure the necessary libraries and tools for federated 	
	learning (e.g., TensorFlow, PyTorch).	
	 Set up a basic federated learning environment. 	
	 Train a simple federated model on a synthetic dataset. 	
5	Federated Averaging Algorithm	04
	 Implement the Federated Averaging (FedAvg) algorithm. 	
	o Use FedAvg to train a basic model across decentralized data	
	sources.	
	o Evaluate the model's performance and compare it to a centralized	
	model.	
6	Implementing Federated Stochastic Gradient Descent (FSGD)	04
	o Implement Federated Stochastic Gradient Descent (FSGD).	
	o Train a model using FSGD and compare its convergence with	
	standard SGD.	
_	o Discuss the benefits and drawbacks of FSGD.	
7	Differential Privacy in Federated Learning	02
	o Implement Federated Learning with Differential Privacy (DP).	
	 Explore the impact of varying privacy parameters on model 	
	accuracy.	
0	o Discuss the trade-offs between privacy and utility.	
8	Secure Aggregation and Encryption Techniques	04

	0	Implement secure aggregation techniques (e.g., secure sum) in	
		federated learning.	
	0	Encrypt and decrypt model updates for privacy.	
	0	Compare the performance of secure aggregation with non-secure	
		methods.	
9	Federa	ated Learning on Heterogeneous Data Sources	04
	0	Simulate federated learning on datasets with varying distributions.	
	0	Explore techniques for handling non-IID (non-Independently and	
		Identically Distributed) data.	
	0	Discuss strategies to mitigate issues with heterogeneous data	
		sources.	
10	Federated Transfer Learning		04
	0	Implement federated transfer learning to leverage pre-trained	
		models.	
	0	Fine-tune a pre-trained model on decentralized data sources.	
	0	Evaluate the transfer learning model's performance.	