NIRMA UNIVERSITY

Institute:	Institute of Technology			
Name of Programme:	BTech (CSE)			
Course Code:	3CS208ME24			
Course Title:	Internet of Things			
Course Type:	Department Elective-II			
Year of Introduction:	2024-25			

L	T	Practical Component				
		LPW	PW	W	S	
3	0	2	-	_	-	4

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to -

1. summarise the architectural components and platforms of the IoT ecosystem	(BL2)
2. apply appropriate access technology and protocols as per the application	(BL3)
requirement	
3. appraise the role of big data, cloud computing, and data analytics in a typical IoT	(BL5)
system	
4. design applications with suitable lightweight data processing and communication	(BL6)
Methodologies.	

Unit	Contents	Teaching Hours
		(Total 45)
Unit-I	Introduction, applications, need and scope of IoT, IoT reference model	07
	and Various IoT architectures, functional stack, Processors, and	
Unit-II	Operating Systems for resource-constrained devices M2M Communication, Sensors and actuators, smart objects,	12
Omt II	Connecting objects, protocols, and access technologies like	12
	IEEE802.15.4, LoRaWAN, LTE-M, BLE, NB-IoT, Sigfox	
Unit-III	IoT network layer, 6LoWPAN, IPv6: IPv6 structure, addressing,	07
	routing, interconnecting issues, 6LoWPAN: forwarding, addressing,	
Unit-IV	header compression, neighbor discovery, Routing in LLN, RPL Application layer protocols, CoAP, MQTT, AMQP, XMPP, Integrating	09
OIII I V	Internet Services with Interoperable data encoding with XML, JSON,	0)
	and CBOR, Sensor data models and representation, lightweight web	
	services for IoT	
Unit-V	Data analytics for IoT, machine learning, Big Data Analytics tools like	07
	NoSQL, and Hadoop, Securing IoT, Challenges in IoT security, provisions for securing IoT network	
Unit-VI	Case studies on IoT applications: Connected Vehicles and Autonomous	03
	Vehicles, Industrial IoT, IoMT (Internet of Medical Things), Smart Grid	

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents

Suggested Readings/ References:

- 1. David Hanes, G. Salgueiro, IoT Fundamentals Networking Technologies, Protocols, and Use Cases for Internet of Things, Cisco Press
- 2. Jean-Philippe Vasseur, Adam Dunkels, Interconnecting Smart Objects with IP: The Next Internet, Morgan Kaufmann
- 3. Pethuru Raj, Anupama Raman, The Internet of Things Enabling Technologies, Platforms and Use Cases, CRC Press
- 4. Robert Stackowiak, Art Licht, VenuMantha and Louis Nagode, Big Data and The Internet of Things, Apress
- 5. Peter Waher, Learning Internet of Things, Packt Publishing Ltd
- 6. Daniel Kellmereit, Daniel Obodovski, The Silent Intelligence: The Internet of Things, DND Ventures
- 7. Olivier Hersent, David Boswarthick, Omar Elloumi, The Internet of Things: Key Applications and Protocols, Wiley

Suggested List of Experiments:

Sr.	Title	Hours
No.		
1	Building basic electronic circuits using various components and exploring ESP8266, ESP32, and Arduino IDE.	02
2	Programming the boards – ESP, Arduino	02
3	Access sensors and control actuator using HTTP protocol	02
4	Interfacing temperature and ultrasonic sensor with micro-controller	04
5	Integrating Bluetooth, RFID, and LoRa transceivers with different IoT platforms	04
6	Upload sensor data to a cloud platform	02
7	Publish and Subscribe with MQTT	04
8	Application development using COAP	04
9	Interfacing IoT boards with platforms like IFTTT	02
10	Simulate IoT network on Cooja Simulator focusing on 6LowPAN	04