NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	Integrated BTech (CSE)-MBA
Course Code:	3CS209ME24
Course Title:	Network Security
Course Type:	Department Elective-IV
Year of Introduction:	2024-25

L	T	Practical Component				C
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to -

- demonstrate a clear understanding of fundamental network security concepts, terminologies, and principles
 analyse common network security threats, vulnerabilities, and attack vectors
 analyse common network security threats, vulnerabilities, and attack vectors
- 3. explain the principles of cryptography and apply cryptographic techniques to protect data and communications (BL5)
- 4. develop security policies and procedures to ensure compliance with relevant standards and regulations. (BL6)

Unit	Contents	Teaching Hours
		(Total 45)
Unit-I	Introduction to Network Security: Introduction to network security	05
	concepts and terminology, The importance of network security in	
	modern technology, Overview of security policies and procedures,	
	introduction to Cryptography	
Unit-II	Information Security: Fundamentals of cryptography, Symmetric and	10
	asymmetric encryption, Block Ciphers and DES, Advanced Encryption	•
	Standard (AES), Block Cipher Operations, Pseudo Random Number	
	Generation and Stream Ciphers, Diffie Hellman Key Exchange, CRT	
	Problem, RSA	
Unit-III	Network Threats and Defence: Types of network threats: malware,	10
	phishing, DoS, etc., Attack vectors and methods, Intrusion Detection	
	Systems (IDS) and Intrusion Prevention Systems (IPS), Understanding	
	firewalls: types, technologies, and configurations, Access control and	
	security policies.	
Unit-IV	Network Security: Secure Socket Layer (SSL) Architecture and	10
	working, Transport Level Security (TLS) including HTTPS, HTTPS	10
	Use, Secure Shell SSH Protocol, port forwarding Electronic Mail	
	Security: Email Security Enhancements, Pretty Good Privacy (PGP),	
	S/MIME, IP Security, IPSec, IPSec key management	
Unit-V	Virtual Private Networks (VPNs) and Wireless Network Security:	10
OIIIt- V	VPN principles and types, VPN protocols and encryption, Wireless	10
	network security threats and solutions, Wireless encryption protocols	
	network security uneats and solutions, whereas energetion protocols	

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents.

Suggested Readings/ References:

- 1. William Stallings, Cryptography and Network Security: Principles and Practice, Pearson.
- 2. D. R. Stinson: Cryptography: Theory and Practice (Discrete Mathematics and Its Applications), CRC Press.
- 3. B. Schneier: Applied cryptography: protocols, algorithms, and source code in C, John Wiley & Sons.
- 4. Bernard Menezes: Network Security & Cryptography, Cengage Learning.

Suggested List of Experiments:

Sr.	Title	Hours
No.		
1	Implementation and crypt-analysis of shift-based ciphers- Caesar Cipher,	02
	ROT-13 cipher)	
2	Implementation of Transposition ciphers (Single as well as Multilevel)	02
3	Exploration of various tools to perform encryption and decryption	02
4	Cryptography implementation using block-cipher DES	04
5	Asymmetric Cryptography- Creation of RSA key, RSA encryption and	04
	decryption	
6	Simulating the Key Distribution Scenario for Symmetric Key Cryptography	04
	using the simulator of your choice	
7	Use of Snort/Wireshark tool for Network Intrusion Detection Systems to	04
	monitor network traffic and analyze attack patterns	
8	Configure and test VPN connections using technologies such as IPsec or	02
	OpenVPN	
9	Perform vulnerability scans using tools like Nessus or OpenVAS to	04
	identify potential security weaknesses.	
10	Set up network security monitoring tools to collect and analyze logs for signs	02
	of security incidents.	