NIRMA UNIVERSITY | Institute: | Institute of Technology | |-----------------------|----------------------------| | Name of Programme: | Integrated BTech (CSE)-MBA | | Course Code: | 3CS513ME24 | | Course Title: | Advanced Data Structures | | Course Type: | Department Elective-IV | | Year of Introduction: | 2024-25 | | L | T | Practical Component | | | | | |---|---|----------------------------|----|---|---|---| | | | LPW | PW | W | S | | | 3 | 0 | 2 | - | - | - | 4 | Teaching Hours # Course Learning Outcomes (CLO): Unit At the end of the course, the students will be able to – | 1. interpret the trade-offs involved in choosing between different data structures | (BL2) | |--|-------| | 2. apply advanced data structures to solve real-world problems | (BL3) | | 3. analyse the time and space complexity of algorithms | (BL4) | | 4. design and implement advanced data structures. | (BL6) | **Contents** | | | (Total 45) | |----------|--|------------| | Unit-I | Search Trees: Models of Search Trees, Properties and transformations, height of search tree, basic find, insert and delete, returning from leaf to root, dealing with non-unique keys, queries for keys in an interval, building optimal search trees, converting trees to lists, removing a tree. | 09 | | Unit-II | Balanced Search Trees: Height-balanced and weight-balanced trees, B-trees, Red Black Trees and Trees of almost optimal height, Finger trees and level linking, trees with partial rebuilding, Splay Trees, Skip Trees, Joining and Splitting Balanced Search Trees. | 09 | | Unit-III | Tree Search for Set of Intervals: Interval Trees, Trees for the union of intervals, trees for sums of weighted intervals, trees for interval-restricted maximum sum queries, orthogonal range trees, higher dimensional segment trees, other systems of building blocks, range counting and semigroup model, Quad-tree, kd-trees and related structures. | 09 | | Unit-IV | Heaps: Array-based heaps, heap-ordered trees and half-ordered trees, Leftist Heaps, Skew heaps, Binomial heaps, changing keys in heaps, Fibonacci heaps, heaps of optimal complexity, Double ended heap structures and multidimensional heaps, heap-related structures with constant time updates. | 09 | | Unit-V | Union – Find and related structures: Union – Find, Union Find with copies and dynamic segment trees, list splitting, Problems on root-directed trees, maintaining a linear order Data Structure Transformations: Making structures dynamic and persistent | 06 | | Unit-VI | Hashing and dictionary operations: Static & Dynamic Hashing techniques, Tries and compressed tries, Dictionaries allowing errors in queries, Suffix Trees, Suffix arrays | 03 | #### **Self-Study:** The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents ### Suggested Readings/ References: - 1. Peter Brass, Advanced Data Structures, Cambridge University Press - 2. Suman Saha, S. Shukla, Advanced Data Structures: Theory and application, CRC press TESAL . 3. A.A. Puntambekar, Advanced Data Structures, Technical Publications ## **Suggested List of Experiments:** | Sr.
No. | Title | Hours | | | | | | |------------|--|-------|--|--|--|--|--| | 1 | Implement shadow copying technique for STACK data structure to solve the | | | | | | | | 2 | MAXZISE problem. Implement a balanced binary search tree (AVL). The search tree operations create, insert, delete, and display should be included. The input for creating the tree should be taken from a text/CSV file. | | | | | | | | 3 | The content of the file should be a unique key-object pair. Rebalancing operations can be delayed until a certain threshold is attained. The scapegoat tree uses partial rebuilding to balance a search tree. Implement | | | | | | | | 4 | a scapegoat tree to demonstrate the partial rebuilding operation.
Skip list structures are used to retrieve the data faster. Implement the structure up to the third level. Show the effect of the insert and delete operation. | 02 | | | | | | | 5 | Write a program to split a balance search tree at i. Root ii. A given point of split. | 04 | | | | | | | 6 | Segment trees are useful for finding the range sum of a given interval. Write a program to demonstrate the usage of the segment tree structure to find the range sum of numbers in a given range. Example: Given | 02 | | | | | | | | Index 0 1 2 3, 4 5 6 7 8 9 | | | | | | | | | Data 2 3 4 5 6 7 8 9 10 11 | | | | | | | | | Sum $(0,4) = 20$
Sum $(2,6) = 30$ | | | | | | | | 7 | Implement heap data structure using linked list structure. The list should retrieve high-priority objects every time the extract operation is performed. | 04 | | | | | | | 8 | Write a program to implement a union-find structure. The program should demonstrate the structure representation of the set and list the items of the selected set. | 04 | | | | | | | 9 | Suffix arrays are preprocessed structures that can be used to solve the classical substring matching problem. Implement suffix arrays for a long string sequence and demonstrate the matching operation. | 02 | | | | | | | 10 | Hash tables are important data structures. However, hash tables are subject to collision. Implement a program with a collision resolution technique with Insert, delete, and display operation | 02 | | | | | |