NIRMA UNIVERSITY | Institute: | Institute of Technology | |-----------------------|--------------------------| | Name of Programme: | BTech (CSE) | | Course Code: | 3CS515ME24 | | Course Title: | Graph Theory | | Course Type: | Department Elective - II | | Year of Introduction: | 2024-25 | | L | T | Practical Component | | | | C | |---|---|----------------------------|----|---|---|---| | | | LPW | PW | W | S | | | 3 | 0 | 2 | - | - | - | 4 | # Course Learning Outcomes (CLO): At the end of the course, the students will be able to - - 1. explain fundamental graph theory concepts, including graph discovery, (BL2) definitions, set operations, and matrix representations - 2. apply graph theory to solve connected graphs, shortest path, and weighted graph (BL3) problems - 3. analyse properties of trees and graphs with an understanding of combinatorial (BL4) and geometric aspects - 4. elaborate the concepts of graph theory and connect them with applications. (BL6) | Unit | Contents | | | |----------|---|------------|--| | Unit-I | Introduction to Graph Theory: Discovery of graphs, Definitions, and | (Total 45) | | | **** | Set Operations on Graphs: Union, Sum, Complement, Difference, Cartesian Product, Composition, and Fusion. Sub-graphs, Isomorphic graphs, Matrix representations of graphs, Degree of a vertex, directed walks, paths, and cycles, Connectivity in digraphs, Eulerian and Hamilton digraphs, Graphic sequences, Graph-theoretic model of the LAN problem, Havel-Hakimi criterion, Realization of a graphic | | | | | sequence. | | | | Unit-II | Connected Graphs and Shortest paths: Connected graphs, Distance, Cut-vertices and cut-edges, Blocks, Connectivity, Weighted graphs, and shortest paths, Weighted graphs, Djkstra's shortest path algorithm, Floyd-Warshall's shortest path algorithm. | 09 | | | Unit-III | Trees: Properties, Pendant Vertices, Distance and Canters in a tree, Rooted and Binary Trees, Counting Trees, Spanning Trees and Fundamental Circuits, Number of Spanning Trees. | 09 | | | Unit-IV | Planar and Dual Graphs: Combinatorial vs. geometric Graphs, Planar Graphs, Kuratwoski Graphs, Theorems, Detection of Planarity, Geometric and Combinatorial Dual, Thickness, and Crossings. | 07 | | | Unit-V | Coloring, Covering, and Partitioning: Basic Definitions, Cliques and chromatic number, Chromatic Polynomials, Mycielski's theorem, Greedy coloring algorithm, Coloring of chordal graphs, Brooks theorem, Edge Colorings, Matchings, Coverings, The four-color conjecture and five-color theorem. | 10 | | ### **Self-Study:** The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents ## **Suggested Readings/ References:** - 1. N. Deo, Graph theory with applications to engineering and computer science, Courier Dover Publications - 2. JA Bondy and USR Murty, Graph theory with applications. Bulletin of the American Mathematical Society, The Macmillian Press Ltd. - 3. Doughlous B. West, Introduction to graph theory, Upper Saddle River, NJ: Prentice Hall. - 4. Gary Chartard and Ping Zhang, A First Course in Graph Theory, Courier Corporation. - 5. Geir Agnarsson and Raymond Greenlaw, Graph Theory: Modelling Applications, and Algorithms, Pearson/Prentice Hall. ## **Suggested List of Experiments:** | Sr.
No. | Title | Hours | |------------|---|-------| | 1 | Use an adjacency matrix and adjacency list to represent the graph. Use any of the representations to find the union, intersection, complement, sum, and difference of two graphs. | 02 | | 2 | Write a program to check whether two graphs are isomorphic to each other or not. | 04 | | 3 | Use the Havel-Hakimi theorem and check whether the given degree sequence is graphical or not. | 02 | | 4 | Write a program to find all the spanning trees of a complete directed graph. | 04 | | 5 | Write a program to find the minimum cut edges from a given graph. (Use Kerger's Algorithm). | 02 | | 6 | Write a program to find all the articulation points from a given graph. (Use DFS tree) | 04 | | 7 | Write a program to check whether the graph is planar or not. Apply elementary reduction and check for the resultant three conditions of planarity. | 04 | | 8 | Write a program to find the maximum clique from a given graph. | 04 | | 9 | Write a program to find the chromatic number of a given graph. | 02 | | 10 | Write a program to apply a four-color conjecture to the LAN topology represented graphically. | 02 |