NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	BTech (CSE)
Course Code:	3CS515ME24
Course Title:	Graph Theory
Course Type:	Department Elective - II
Year of Introduction:	2024-25

L	T	Practical Component				C
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to -

- 1. explain fundamental graph theory concepts, including graph discovery, (BL2) definitions, set operations, and matrix representations
- 2. apply graph theory to solve connected graphs, shortest path, and weighted graph (BL3) problems
- 3. analyse properties of trees and graphs with an understanding of combinatorial (BL4) and geometric aspects
- 4. elaborate the concepts of graph theory and connect them with applications. (BL6)

Unit	Contents		
Unit-I	Introduction to Graph Theory: Discovery of graphs, Definitions, and	(Total 45)	
****	Set Operations on Graphs: Union, Sum, Complement, Difference, Cartesian Product, Composition, and Fusion. Sub-graphs, Isomorphic graphs, Matrix representations of graphs, Degree of a vertex, directed walks, paths, and cycles, Connectivity in digraphs, Eulerian and Hamilton digraphs, Graphic sequences, Graph-theoretic model of the LAN problem, Havel-Hakimi criterion, Realization of a graphic		
	sequence.		
Unit-II	Connected Graphs and Shortest paths: Connected graphs, Distance, Cut-vertices and cut-edges, Blocks, Connectivity, Weighted graphs, and shortest paths, Weighted graphs, Djkstra's shortest path algorithm, Floyd-Warshall's shortest path algorithm.	09	
Unit-III	Trees: Properties, Pendant Vertices, Distance and Canters in a tree, Rooted and Binary Trees, Counting Trees, Spanning Trees and Fundamental Circuits, Number of Spanning Trees.	09	
Unit-IV	Planar and Dual Graphs: Combinatorial vs. geometric Graphs, Planar Graphs, Kuratwoski Graphs, Theorems, Detection of Planarity, Geometric and Combinatorial Dual, Thickness, and Crossings.	07	
Unit-V	Coloring, Covering, and Partitioning: Basic Definitions, Cliques and chromatic number, Chromatic Polynomials, Mycielski's theorem, Greedy coloring algorithm, Coloring of chordal graphs, Brooks theorem, Edge Colorings, Matchings, Coverings, The four-color conjecture and five-color theorem.	10	

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents

Suggested Readings/ References:

- 1. N. Deo, Graph theory with applications to engineering and computer science, Courier Dover Publications
- 2. JA Bondy and USR Murty, Graph theory with applications. Bulletin of the American Mathematical Society, The Macmillian Press Ltd.
- 3. Doughlous B. West, Introduction to graph theory, Upper Saddle River, NJ: Prentice Hall.
- 4. Gary Chartard and Ping Zhang, A First Course in Graph Theory, Courier Corporation.
- 5. Geir Agnarsson and Raymond Greenlaw, Graph Theory: Modelling Applications, and Algorithms, Pearson/Prentice Hall.

Suggested List of Experiments:

Sr. No.	Title	Hours
1	Use an adjacency matrix and adjacency list to represent the graph. Use any of the representations to find the union, intersection, complement, sum, and difference of two graphs.	02
2	Write a program to check whether two graphs are isomorphic to each other or not.	04
3	Use the Havel-Hakimi theorem and check whether the given degree sequence is graphical or not.	02
4	Write a program to find all the spanning trees of a complete directed graph.	04
5	Write a program to find the minimum cut edges from a given graph. (Use Kerger's Algorithm).	02
6	Write a program to find all the articulation points from a given graph. (Use DFS tree)	04
7	Write a program to check whether the graph is planar or not. Apply elementary reduction and check for the resultant three conditions of planarity.	04
8	Write a program to find the maximum clique from a given graph.	04
9	Write a program to find the chromatic number of a given graph.	02
10	Write a program to apply a four-color conjecture to the LAN topology represented graphically.	02