NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology	
Name of Programme:	BTech AI&ML	
Course Code:	2CS101CC25	
Course Title:	Machine Learning	
Course Type:	Core	
Year of Introduction:	2025-26	

L	T	Practical Component				
	14.	LPW	PW	W	S	
-2	0	2	-	-	-	3

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to –

- 1. explain the importance of data visualization and distinguish between supervised and unsupervised learning techniques (BL2)
- 2. utilise regression models and optimise them through regularization, and evaluate it (BL3)
- 3. compare the performance of classification and clustering algorithms in varied scenarios (BL4)
- 4. design artificial neural networks and apply advanced learning techniques. (BL6)

Unit	Contents	Teaching Hours (Total 30)
Unit-I	Introduction to Machine Learning: Motivation and Applications, importance of Data Visualisation, Basics of Supervised and Unsupervised Learning, Significance of Model Training	03
Unit-II	Regression Techniques: Basic concepts and applications of Regression, Simple Linear Regression – Gradient Descent and Normal Equation Method, Multiple Linear Regression, Non-Linear Regression, Linear Regression with Regularization, Hyper-parameters tuning, Loss Functions, Evaluation Measures for Regression Techniques	10
Unit-III	Classification Techniques: Naïve Bayes Classification, Fitting Multivariate Bernoulli Distribution, Gaussian Distribution and Multinomial Distribution, K-Nearest Neighbours, Decision trees. Support Vector Machines: Hard Margin and Soft Margin, Kernels and Kernel Trick, Evaluation Measures for Classification Techniques	08
Unit-IV	Artificial Neural Networks: Biological Neurons and Biological Neural Networks, Perceptron Learning, Activation Functions, Multilayer Perceptrons, Back-propagation Neural Networks, Competitive Neural Networks	05
Unit-V	Clustering: Hierarchical Agglomerative Clustering, k-means Algorithm, Self-Organizing Maps	02
Unit- VI	Advanced Concepts: Basics of Semi-Supervised and Reinforcement Learning, Introduction to Deep Learning.	02

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Tom Mitchell, Machine Learning, Tata McGraw Hill
- 2. C. Bishop, Pattern Recognition and Machine Learning, Springer
- 3. R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification and Scene Analysis, Wiley
- 4. Kishan Mehrotra, Chilukuri Mohan, and Sanjay Ranka, Elements of Artificial Neural Networks, Penram International
- 5. Rajjan Shinghal, Pattern Recognition, Techniques and Applications, OXFORD
- 6. Athem Ealpaydin, Introduction to Machine Learning, Prentice Hall.

Suggested List of Experiments:

Sr.	Name of Experiments/Exercises	Hours
No.		
1	Introduction to Python and Numpy	02
2	Introduction to Pandas, Matplotlib, and Sklearn	02
3	Simple and Multiple Linear Regression using Gradient Descent and normal	04
	Equation Methods (without using sklearn or equivalent library for both)	
4	Linear Regression with Regularization (without using sklearn or equivalent	04
	library) and Simple and Multiple Linear Regression with and without	
	regularization using Sklearn	
5	Naïve-Bayes – Multivariate Bernoulli, Multinomial and Gaussian using	04
	sklearn	
6	Decision Trees – ID3, C4.5 using sklearn	02
7	Support Vector Classification using sklearn	02
8	AND gate using Perceptron Learning without using libraries	04
9	Ex-OR Gate/any other problem using Backpropagation Neural Networks	04
	(self-implementation)	
10	K-means clustering using sklearn.	02

Memi III IV