NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology
Name of Programme:	BTech CSE, Integrated BTech (CSE)-MBA
Course Code:	2CS202CC23
Course Title:	Data Communication
Course Type:	Core
Year of Introduction:	2023-24

L	Т	Practical Component				C
		LPW	PW-	W	S	
2	0	2	-	-	-	3

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to –

1. explain data/signal transmission over communication media	(BL2)
2. apply concepts of data communication to solve various problems	(BL3)
3. analyse various spread spectrums and multiplexing	(BL4)
4. appraise the mechanisms of modulation techniques.	(BL4)

Unit	Contents		
Unit-I	Introduction to Data Communication: components of the network, its types and topology, protocol. Network models: OSI reference model, TCP/IP protocol suite, Applications of data communications	(Total 30) 07	
Unit-II	Data Communications and Networking for Today's Enterprise Data and Signal: types of Analog and digital signals and their characteristics, transmission of digital signal, data rate limits, signals in time and frequency domain, transmission impairment, performance measurement of network	05	
Unit-III	Digital Transmission: digital to digital and Analog to digital conversion, transmission modes Analog transmission: Digital to analog and analog to analog conversion and Modulations	06	
Unit-IV	Transmission Media: guided media and unguided media: radio frequency allocation, frequency reuse, propagation of radio waves, microwaves and infrared, satellite communication, cellular telephony. Multiplexing and Spread Spreading Techniques: Switching techniques, types of switching, structure of switch, types of switches. Telephone and cable network for data communication, dial-up modem,	07	
Unit-V	DSL lines, Cable TV Types of Errors: detection versus correction, coding, block coding, cyclic codes, checksum, forward error correction.	05	

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Behrouz Forouzan, Introduction to Data Communication and Networking, McGraw Hill
- 2. William Stallings, Data and Computer Communication, Prentice Hall
- 3. Schweber W.L, Data Communication, McGraw Hill
- 4. Andrew S Tanenbaum, Computer Networks, Prentice Hall
- 5. B.P. Lathi, Zhi Ding, Modern Digital and Analog Communication, Oxford University Press.

Suggested List of Experiments:

S. No.	Name of Experiments/Exercises	Hours
1	Understanding the basic computer network terminology and identification of	02
	various network-related components:	
	Connectors: RJ32, RS232, BNC, RJ-45, I/O Devices	
	Cables: Coaxial, twisted pair, UTP, NIC (network interface card)	
	Inter-Connecting Devices: Switch, Hub	
2	Simulation of different network topologies and comparative study of each.	02
	(Using CISCO Packet Tracer)	
3	Hands-on practice of signals and their properties in MATLAB/Scilab:	02
	Amplitude, Phase, and Frequency of Pure and Composite signals	
4	Implementation and Analysis of Line Coding Schemes: Implement unipolar	04
	NRZ-L, NRZ-I, and polar Manchester, Differential Manchester, and	
	AMI/Pseudo-ternary. Compare the schemes for parameter synchronization,	
_	DC component, and bandwidth	
5	Create Peer-to-peer networks using RS232 & RJ45 cross cable & create	02
	switch-based networks using RJ45 straight cable. Assign different groups to	
	the different users and allocate different resources to each group	
6	Implementation of analog modulation techniques (using MATLAB/Scilab):	04
	A. Implement amplitude, frequency, and phase modulation.	
	B. Identify the difference between them by comparing the results in	
7	terms of bandwidth	0.4
7	Implementation of Pulse Code Modulation: Sampling, Quantisation, and	04
8	Digitisation of various types of waveforms	0.0
9	Implementation of Synchronous Time Division Multiplexing technique	02
9	Implementation of Cyclic Redundancy Check (CRC) Error Detection Algorithm for Noisy channel	04
10		0.4
10	Implementation of Hamming Code.	04