NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology	
Name of Programme:	BTech CSE, Integrated BTech (CSE)-MBA, BTech AI&ML	
Course Code:	2CS502CC25	
Course Title:	Object Oriented Programming	
Course Type:	Core	
Year of Introduction:	2025-26	

L	T	Practical Component				
		LPW	PW	W	S	
2	0	2	_	-	-	3

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to –

Returning Objects, Pointers to Members

1.	infer the principles of Object-Oriented Programming (OOP)	(BL2)
2.	apply fundamental concepts of C++ programming to solve problems	(BL3)
3.	make use of object-oriented concepts to define classes and objects in the	(BL3)
	real world of problems	` /
4	design programs based on inheritance nolumerahism and virtual	(DL 6)

4. design programs based on inheritance, polymorphism, and virtual (BL6) function concepts.

Unit Contents **Teaching** Hours (Total 30) Principles of Object-Oriented Programming: Software Evolution, Unit-I 03 Procedure-Oriented Programming, Object-Oriented Programming Paradigm, Basic Concepts of Object-Oriented Programming, Benefits of OOP, Object-Oriented Languages, Applications of OOP C++ Tokens, Expressions, and Control Structures: Introduction to Unit-II 09 C++ and its Applications, Basic C++ Statements, Classes and Objects, Structure of C++ Program, Tokens Expressions and Control Structures: Tokens, Keywords, Identifiers and Constants, Basic Data Types, User-Defined Data Types, Derived Data Types, Constants, Type Compatibility, Variables, Reference Variables, Operators in C++, Scope Resolution Operator, Member Dereferencing Operator, Memory Management Operators, Manipulators, Expressions and their Types, Implicit Conversions, Operator Overloading, Operator Precedence, Control Structures Functions in C++: The Main Function, Function Prototyping, Call by Reference, Return by Reference, Inline Functions, Default Arguments, Function Overloading, Friend and Virtual Functions Unit-III Classes and Objects: C Structures Revisited, specifying a Class, 04 Defining Member Functions, Private Member Functions, Arrays within a Class, Memory Allocation for Objects, Static Data Members, Static Member Functions, Arrays of Objects, Objects as Function Arguments,

Unit-IV	Constructors and Destructors: Introduction, Constructors,	06
	Parameterized Constructors, Multiple Constructors in a Class,	
	Constructors with Default Arguments, Copy Constructor, Destructors	
	Operator Overloading and Type Conversions: Concepts of Operator	
	Overloading, Overloading Unary Operators, Overloading Binary	
	Operators, Manipulation of Strings Using Operators, Rules for	
	Overloading Operators	
Unit-V	Inheritance: Defining Derived Classes, Types of Inheritance, Abstract	04
	Classes, Constructors in Derived Classes, Virtual Base Classes	
Unit-VI	Pointers, Virtual Functions and Polymorphism: Pointers to Objects,	04
	this Pointer, Pointers to Derived Classes, Virtual Functions, Pure	
	Virtual Functions.	

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents

Suggested Readings/ References:

- 1. E Balagurusamy, Object Oriented Programming with C++, McGraw Hill
- 2. A.K. Sharma, Object-Oriented Programming with C++, Pearson
- 3. Herbert Schildt, C++: The Complete Reference, McGraw-Hill
- 4. Jana, Debasish, C++ And Object-Oriented Programming Paradigm, Prentice Hall.

Suggested List of Experiments:

Sr. No.	Name of Experiments/Exercises	Hours
1	Basic of C++ Program	02
2	Exemplify the Control Structures in C++	02
3	Demonstrate the Function Overloading and Inline Functions concepts	04
4	Array handling in C++	02
5	Implement the concepts of Classes and Objects	04
()	Develop a program to demonstrate the use of default constructors, parameterized constructors, copy constructors, and destructors in managing object lifecycles	04
	Implement a program to overload operators (e.g., +, -, ==) for user-defined classes, such as performing arithmetic operations on complex numbers or comparing two strings	02
^	Write a program to demonstrate type conversion between basic and user-defined data types.	02
9	Write programs to demonstrate types of inheritance and abstract classes	04
10	Demonstrate the concepts of pointers and virtual functions.	04