NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology
Name of Programme:	
Course Code:	2CS510CC25
Course Title:	Design and Analysis of Algorithms
Course Type:	Core
Year of Introduction:	2025-26

L	Т	Practical Component					
		LPW	PW	W	S		
2	0	2	-	-	-	3	

(BL2)

Course Learning Outcomes (CLO):

A + +	ha and at	falla a a a summa	41	-4 44*11	11 11					
Att	ne ena or	the course,	tne	students will	t be able to –					
1.	explain	the notion	of	algorithmic	complexity	and	logic	of	fundamental	
	algorith	ms					_			

	e e e e e e e e e e e e e e e e e e e	
2.	identify suitable data structures to solve a problem effectively and efficiently	(BL3)

	2			Proceeding of the control of	i y wild officionity	(DDJ)
3.	apply optimal soluti	ion approach	for comp	lex problems		(BL 3)

	TI 5 I	(DD2)
4.	formulate appropriate algorithms for real-life problems.	(BL6)

Unit	Contents	Teaching Hours (Total 30)
Unit-I	Elementary Algorithmic: Efficiency of Algorithms, average and	05
	worst-case analysis, Elementary Operation Analysis Techniques:	
	Empirical, mathematical, Asymptotic analysis and related	
	unconditional and conditional notations	
Unit-II	Analysis of Algorithms: Analyzing control structures: sequencing, "For" loops, Recursive calls, "While" and "repeat" loops. Solving Recurrences: Intelligent guesswork, Homogeneous recurrences, non-homogeneous Recurrences, Change of variable, Range transformations, Master Theorem, Recurrence Tree	05
Unit-III	Advanced Data Structures: Binomial heaps, Fibonacci Heap, Disjoint set structures. Divide-and-Conquer: Multiplying large integers, Merge sort, quick sort, Strassen's matrix multiplication	05
Unit-IV	Greedy Algorithms: Activity Selection Problem, Fractional Knapsack problem, Huffman Coding, Graphs: Minimum spanning trees-Kruskal's algorithm, Prim's algorithm, Single Source Shortest paths: Dijkstra's algorithm	05
Unit-V	Dynamic Programming: The principle of optimality, 0/1 Knapsack Problem, Matrix Chain Multiplication, Longest Common Subservience, All pair shortest path: Floyd-Warshal's algorithm	06
Unit- VI	Branch and Bound and Backtracking : Travelling salesman problem, n-queen problem, Graph coloring problem.	04

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Charles E. Leiserson, Thomas H. Cormen, Ronald L. Rivest, Clifford Stein, Introductionto Algorithms, Prentice Hall
- 2. Gilles Brassard & Paul Bratley, Fundamentals of Algorithmic, Prentice Hall
- 3. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekharan, Fundamentals of Computer Algorithms, Galgotia
- 4. Robert Sedgewick and Kevin Wayne Algorithms, Addison Wesley
- 5. Rod Stephens Essential Algorithms: A Practice Approach to Computer Algorithms Using Python and C#, Wiley.

Suggested List of Experiments:

Sr. No.	Name of Experiments/Exercises	Hours
1	Various applications of Arrays and Matrices	02
2	Working with Linked List	02
3	Searching (binary, ternary, and hash search)	02
4	Different applications of fundamental Sorting Algorithms	02
5	Use of Recursion	04
6	Divide and conquer applications and complexity computations	04
7	Applications of Greedy algorithms	04
8	Applications of Dynamic Programming	04
9	Working with tree algorithms	02
10	Working with Graph Algorithms.	04

Sample