NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology	
Name of Programme:	BTech CSE	
Course Code:	4CS101ME25	
Course Title:	Big Data Systems	
Course Type:	Department Elective-III	
Year of Introduction:	2025-26	

L	Т	Practical Component				-
		LPW	PW	W	S	C
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to -

1.	outline the significance and challenges of big data	(BL2)
2.	model big data applications using various platforms	(BL3)
3.	utilise big data systems for practical business analytics	(BL3)
4.	design data analytics algorithms for various datasets.	(BL6)

Unit	Contents	Teaching
		Hours
		(Total 45)
Unit-I	Introduction to Big Data and Big Data Storage Platforms : Evolution	06
	of Big Data, Types of Big Data, Definition of Big Data, Importance of	
	Big data analytics, Challenges of Conventional Systems, Big data	
	platforms and data storage	
Unit-II	Hadoop and HDFS: Hadoop Ecosystem, Comparisons of RDBMS and	06
	Hadoop, Distributed Computing Challenges, Hadoop Overview,	
	Processing Data with Hadoop, Hadoop YARN, Hadoop Ecosystem	
Unit-III	MapReduce: working with Map Reduce, Anatomy of a Map Reduce	08
	Job Run, Failures, Job Scheduling, Shuffle, and Sort, Task Execution,	
	Map Reduce Types and Formats, Map Reduce Features	
Unit-IV	Big data Machine Learning with Spark: Basic concepts of Apache	15
	Spark, Spark - RDDs, DataFrames, PySpark, NumPy, SciPy, and Spark	
	ML library, big data algorithms for Linear Regression, Clustering,	
	Association rule mining, Decision tree	
Unit-V	NoSQL Database: CAP Theorem - BASE Concept, NoSQL, Types of	10
	No SQL databases, Introduction to MongoDB, Data Types in	
	MongoDB, CRUD operations	

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents

Suggested Readings/ References:

- 1. Bill Chambers and Matei Zaharis, Spark: The Definitive Guide: Big Data Processing Made Simple, O'Reilly
- 2. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer
- 3. Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos, Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data, McGraw Hill
- 4. Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge **University Press**
- 5. Seema Acharya and Subhashini C, Big Data and Analytics, Wiley

Suggest	ed List of Experiments:		
Sr.	Name of Experiments/Exercises	Hours	
1	Study and explore various applications of big data in different domains. Choose one		
	of them and study in detail. Also, write down the report on different types of digital data generated in selected applications.		
	For example.:		
	Big Data in Retail		
	Big Data in Healthcare		
	Big Data in Education		
	Big Data in E-commerce		
	Big Data in Media and Entertainment		
	Big Data in Finance		
	Big Data in Travel Industry		
	Big Data in Telecom		
	Big Data in Automobile		
2	Learning limitations of data analytics by applying Machine Learning Techniques on large amounts of data. Write a program to read data sets from any online website, excel file, and CSV file and to perform	02	
	a) Linear regression and logistic regression on the iris dataset.		
	b) K-means clustering.		
3	Set up a single-node Hadoop cluster and apply HDFS commands to the single-node	04	
	Hadoop Cluster.		
4	Design MapReduce algorithms to take a very large file of integers and produce as	04	
	output:		
	The largest integer		
	• The average of all the integers.		
	 The same set of integers, but with each integer appearing only once. 		
	• The count of the number of distinct integers in the input.		
5	Apply MapReduce algorithms to find phrase frequency from a given dataset.	02	
	Prepare a report to guide the design of the mapper and reducer.		
6	Analyze the impact of different numbers of mappers and reducers on the same	02	
	definition as practical 4. Prepare a conclusive report on the analysis.		
7	Implement regression or classification analytic algorithms using MapReduce by	04	
	handling given datasets using PySpark.		
8	Implement any one of the analytic algorithms of the clustering application using PySpark.	02	
9	Set up the MongoDB environment in your system. Import restaurant dataset and perform CRUD operation.	04	
10	Case study: Use open-source platforms to solve any big data analytic problem of your choice.	02	