## NIRMA UNIVERSITY

| Institute:            | Institute of Technology      |
|-----------------------|------------------------------|
| Name of Programme:    | BTech CSE                    |
| Course Code:          | 4CS103DE25                   |
| Course Title:         | Explainable AI               |
| Course Type:          | Disciplinary Minor- Elective |
| Year of Introduction: | 2025-26                      |

| L | Т    | <b>Practical Component</b> |    |   |   | C |
|---|------|----------------------------|----|---|---|---|
|   | // · | LPW                        | PW | W | S |   |
| 3 | 0    | 2                          | _  | - | - | 4 |

## **Course Learning Outcomes (CLO):**

At the end of the course, the students will be able to -

- 1. demonstrate the concepts within Explainable AI and interpretable machine (BL2) learning
- 2. identify current techniques for generating explanations from black-box machine (BL3) learning methods
- 3. analyse current ethical, social, and legal challenges related to Explainable AI (BL4) skills and abilities
- 4. assess Explainable AI methods for the given applications. (BL5)

| Unit     | Contents                                                                                                                                                                                                                                                                                                                                         |                  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Unit-I   | <b>Introduction</b> : Introduction to the multidisciplinary topics of Explainable AI (XAI), what is XAI?, the importance of XAI, XAI-                                                                                                                                                                                                            | (Total 45)<br>08 |
|          | related terminologies                                                                                                                                                                                                                                                                                                                            |                  |
|          | <b>Taxonomy of XAI methods</b> : Intrinsic vs post hoc, model-specific vs model-agnostic, and local vs global                                                                                                                                                                                                                                    |                  |
|          | <b>Properties and Trade-off:</b> properties of Explanation methods, tread-off between accuracy and explainability, human-friendly explanations                                                                                                                                                                                                   |                  |
| Unit-II  | Intrinsically explainable models: Linear Regression, Logistic Regression, Generalized Linear Model (GLM), Generalized Additive Model (GAM), and Decision Tree.                                                                                                                                                                                   | 06               |
| Unit-III | XAI methods and its evaluations: Model-Agnostic Methods, Example-based methods, Global Model-Agnostic methods including Partial Dependence Plot (PDP), Conformal Prediction, Individual Conditional Expectation (ICE), Feature Importance, Saliency Maps, Local Interpretable Model-Agnostic Explanations (LIME), SHAP, Integrated Gradient (IG) | 08               |
| Unit-IV  | Visualization Techniques: Activation Maps in CNNs, Attention mechanism in NLP, Visualizing decision boundaries and feature interactions.                                                                                                                                                                                                         | 08               |
| Unit-V   | Fairness and Bias in AI: Understanding biases in data and models, Metrics for fairness evaluation, Techniques to mitigate bias in AI systems.                                                                                                                                                                                                    | 12               |
|          | <b>Ethical Considerations</b> : The impact of AI on society, Responsible AI practices and guidelines.                                                                                                                                                                                                                                            |                  |



Unit-VI **Explainability in Reinforcement Learning:** Understanding policies learned by RL agents, Interpreting state-action trajectories and reward mechanisms.

**Applications of XAI:** healthcare, finance, autonomous systems, and other domains.

03

**Futuristic approaches**: The Future of Machine Learning models and its Interpretability

## **Self-Study:**

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents

## Suggested Readings/ References:

- 1. Molnar, Christoph, Interpretable Machine Learning, Leanpub
- 2. Denis Rothman, Hands-On Explainable AI (XAI) with Python, Packt Publishing
- 3. Michael Munn, David Pitman, Explainable AI for Practitioners, O'Reillyly
- 4. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer
- 5. Uday Kamath, John Liu, Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning, Springer

**Suggested List of Experiments:** 

| Sr. | Title                                                                  | Hours |
|-----|------------------------------------------------------------------------|-------|
| No. |                                                                        |       |
| 1   | Installing and understanding various packages of model interpretation. | 02    |
| 2   | Interpreting tree models.                                              | 04    |
| 3   | Implementing the SHAP model for textual data and analyzing ALE, ICE,   | 04    |
|     | and PDP plots.                                                         |       |
| 4   | Implementing Grad-CAM model for image dataset.                         | 04    |
| 5   | Implement LIME model for image dataset.                                | 02    |
| 6   | Implement integrated gredients for a given image dataset.              | 04    |
| 7   | What-if-tool image smile detection and visualization.                  | 04    |
| 8   | Implementation of XAI Chatbot.                                         | 04    |
| 9   | Generate an anchor explanation for ImageNet dataset.                   | 02    |
| 10  | Cognitive XAI for IMDB dataset                                         | 02    |