NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	B. Tech All (Other than CSE)
Course Code:	4CS107IE25
Course Title:	Data Science
Course Type:	Interdisciplinary Minor-Elective
Year of Introduction:	2025-26

L	T	Practical Component				
		LPW	PW	W	S	
3	0	2	-	-	- 1	4

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to -

- 1. relate statistical and pre-processing methods as the basis of the data science (BL2) domain
- 2. select appropriate techniques and computing environments for applications (BL3) under consideration
- 3. apply and evaluate a variety of algorithms on different types of data (BL3)
- 4. design new solutions to solve problems in diverse domains. (BL6)

Unit	Contents		
Unit-I	Introduction to Data Science: Data Science and its Importance, Applications of Data Science, Data Science and Related Fields,	(Total 45) 04	
Unit-II	Different Computing Environments Mathematical Foundation for Data Science: Independence, Bayes Theorem, Discrete & Continuous Random Variables, Probability Mass and Density Functions, Cumulative Distribution Functions, Mean and Variance of a Random Variable, Discrete & Continuous Distributions, Numerical Summaries of Data, Frequency Distributions and Histograms, Matrices and Related Concepts, Gradients	08	
Unit-III	Data Preprocessing: Different types of Data, Handling Missing Values, Data Normalization, Dimensionality Reduction	05	
Unit-IV	Regression Algorithms for Data Science: Simple and Multiple Linear Regression using Gradient Descent and Normal Equation Methods, Polynomial Regression, Nonlinear Regression, Evaluation Measures	08	
Unit-V	Classification Algorithms for Data Science: K-Nearest Neighbours, Decision Trees, Naive Bayes, Feed Forward Neural Network and Backpropagation, Evaluation Measures	10	
Unit-VI	Clustering Algorithms for Data Science: K-means, Hierarchical Agglomerative and Divisive Clustering, Evaluating Clustering, OPTICS, DBSCAN	07	
Unit- VII	Introduction to Deep Learning: Basics of Deep Learning, Applications of Deep Learning in Data Science	03	

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents.

Suggested Readings/ References:

- 1. Jiawei Han, Micheline Kamber, and Jian Pei Data Mining: Concepts and Techniques, Morgan Kaufmann
- 2. C.M. Douglas and G.C. Runger, Applied Statistics and Probability for Engineers, Wiley
- 3. Tom Mitchell, Machine Learning, TataMcGraw Hill
- 4. Athem Ealpaydin, Introduction to Machine Learning, Prentice Hall India
- 5. Andrew Bruce, Peter C. Bruce, and Peter Gedeck, Practical Statistics for Data Scientists, O'Reilly
- 6. Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Introduction to Statistical Learning, Springer
- 7. Joel Grus, Data Science from Scratch, O'Reilly

Suggested List of Experiments

S. No.	Title	Hours
1	Setup and introduction to Jupyter Notebook and Python libraries for data science.	04
2	Simulate and visualize different probability distributions using Python.	02
3	Handle missing values, normalize data, and apply dimensionality reduction (PCA) on a sample dataset.	02
4	Implement simple and multiple linear regression models using both gradient descent and normal equation methods on a real-world dataset.	04
5	Implement polynomial regression and evaluate its performance.	02
6	Implement k-NN and decision tree classifiers, and evaluate their performance using metrics like accuracy, precision, recall, and F1-score.	04
7	Implement a Naive Bayes classifier and test its performance on a sample dataset	02
8	Build and train a feed-forward neural network using a deep learning framework and understand the backpropagation algorithm.	02
9	Apply k-means and hierarchical clustering algorithms on a sample dataset and evaluate the clustering results.	04
10	Implement a simple deep learning model for a basic application (e.g., image classification or sentiment analysis) using a deep learning framework.	04