NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology
Name of Programme:	BTech CSE
Course Code:	4CS202ME25
Course Title:	Wireless Networks
Course Type:	Department Elective-III
Year of Introduction:	2025-26

L	T	Practical Component				C
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):
At the end of the course, the students will be able to –

1.	outline design issues involved in different wireless networks	(BL2)
2.	analyse the evolution of wireless network architectures with the growing needs	(BL4)
3.	evaluate the available technologies to satisfy various application requirements	(BL5)
4.	propose technological solutions to satisfy various application requirements.	(BL6)

Unit	Contents	Teaching
		Hours
		(Total 45)
Unit-I	Introduction: Growth of mobile communications, Mobile	04
	Communications Fundamentals and its Evolution, Mobile data, Wi-	
	Fi, Bluetooth, Overview of 1G and 2G	
Unit-II	Third-Generation (3G) Overview: Universal Mobile	05
	Telecommunications Service (UMTS), UMTS Services, The UMTS	
	Air Interface, Overview of 3GPP Releases Network Architectures,	
	Overview of CDMA2000, TD-CDMA, TD-SCDMA	
Unit-III	Universal Mobile Telecommunications Service (UMTS): UMTS	08
	Basics, The WCDMA Air Interface, The UTRAN Architecture,	
	Establishment of a UMTS Voice Call, UMTS Packet Data, High	
	Speed Packet Data, Handover, HSPA Connection Establishment	
Unit-IV	CDMA2000: Radio and Network Components, Network Structure,	05
	Packet-Data Transport Process Flow, Radio Network, EVDO	
Unit-V	TD-SDMA and TD-CDMA: Generic TD-SDMA Architecture,	05
	Core Network, Radio Network, Interference Mitigation Techniques,	
	RAN Traffic Planning, Handover, Generic TD-CDMA Architecture,	
	Core Network, Radio Network, Interference Mitigation Techniques,	
	RAN Traffic Planning, Handover	200 18
Unit-VI	Long-Term Evolution (LTE): LTE Ecosystem, Standards, Radio	06
	Spectrum, LTE Architecture, User Equipment, Enhanced Node B,	
	Core Network, Radio Channel Components, TD-LTE, Multiple Input	
	Multiple Output (MIMO), LTE Scheduler, Carrier Aggregation, Cell	
	Search, Cell Re-selection, Attach and Default Bearer Activation,	
	Handover, Self-Organizing Networks (SONs), Relay Cells,	
	Heterogeneous Network (HetNET), Remote Radio Heads (RRH),	
	VoLTE, LTE Advanced	

Unit-VII	Fifth-Generation (5G): 5G Goals, Performance Requirements, Next	06
	Generation Mobile Networks (NGMN) and 3GPP Use case families,	
	building blocks of 5G: New Radio (NR) Interface - Millimeter Wave	
	Spectrum, Massive MIMO, Flexible OFDM Numerologies, Multi-	
	RAT Connectivity, Advance Channel Coding, Network Features -	
	Cloud RAN, 5G Core, Service Based Architecture, RAN	
	Architecture Optimization, Multi-access Edge Computing (MEC),	
	Network Slicing, Virtualization and Automation Technologies	
Unit-VIII	Introduction to Sixth-Generation (6G): Outlook of 6G,	02
	Computational Holographic Radio and Enabling Technologies for	
	6G, Air-interfaces for ultra-low power communications, Semantic	
	Plane Filtering and Control, AI-assisted PHY technologies for 6G,	
	Mobility-Enhanced Edge intelligence (MEET) for 6G	
Unit-IX	Wi-Fi: 802.11 Standards, WiFi Protocols, Frequency Allocation,	04
	Modulation and Coding Schemes, Network Architecture, Security,	
	802.11 Services, Hot Spots, Virtual Private Networks (VPN), Mobile	
	VPN, VPN Types, Wi-Fi Integration with 3G/4G	

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents

Suggested Readings/ References:

- 1. Clint Smith and Daniel Collins, Wireless Networks, McGraw Hill
- 2. Nishith Tripathi and Jeffrey Reed, 5G Cellular Communications: Journey and Destination, A Multimedia, (eBook) Rohde & Schwarz
- 3. Kaveh Pahlavan and Prashant Krishnamurthy, *Principals of Wireless Networks: A Unified Approach*, Prentice Hall
- 4. William Stallings, Wireless Communications and Networks, Pearson

Suggested List of Experiments:

Sr.	Name of Experiments/Exercises	Hours
No.		
1	Explore NS-3 network simulator	02
2	Explore OMNET++ network simulator	02
3	Explore Netsim network simulator	02
4	Simulate Cellular Network Coverage and Capacity.	04
5	Implement and analyze handoff mechanisms	02
6	Investigate and analyze interference and Signal to Noise Ratio in cellular networks	04
7	Simulate and analyze channel coding schemes in cellular network	04
8	Simulate and study the 5G handover procedure	02
9	Measure and analyze WiFi signal strength and coverage	04
10	Investigate and mitigate WiFi interference	04